
219

Secure Sampling for Approximate Multi-partyQuery
Processing

QIYAO LUO, Hong Kong University of Science and Technology, Hong Kong SAR, China

YILEI WANG, Alibaba Group, Hangzhou, China
KE YI, Hong Kong University of Science and Technology, Hong Kong SAR, China

SHENG WANG, Alibaba Group, Hangzhou, China
FEIFEI LI, Alibaba Group, Hangzhou, China

We study the problem of random sampling in the secure multi-party computation (MPC) model. In MPC,

taking a sample securely must have a cost Ω(𝑛) irrespective to the sample size 𝑠 . This is in stark contrast with

the plaintext setting, where a sample can be taken in 𝑂 (𝑠) time trivially. Thus, the goal of approximate query

processing (AQP) with sublinear costs seems unachievable under MPC. To get around this inherent barrier, in

this paper we take a two-stage approach: In the offline stage, we generate a batch of 𝑛/𝑠 samples with �̃� (𝑛)
total cost, which can then be consumed to answer queries as they arrive online. Such an approach allows us to

achieve an �̃� (𝑠) amortized cost per query, similar to the plaintext setting. Based on our secure batch sampling

algorithms, we build MASQUE, an MPC-AQP system that achieves sublinear online query costs by running

an MPC protocol to evaluate the queries on pre-generated samples. MASQUE achieves the strong security

guarantee of the MPC model, i.e., nothing is revealed beyond the query result, which itself can be further

protected by (amplified) differential privacy.

CCS Concepts: • Security and privacy→ Database and storage security; • Information systems→
Data management systems; •Mathematics of computing→ Probability and statistics.

Additional Key Words and Phrases: Secure multi-party computation; Sampling; Approximate query processing

ACM Reference Format:
Qiyao Luo, Yilei Wang, Ke Yi, Sheng Wang, and Feifei Li. 2023. Secure Sampling for Approximate Multi-

party Query Processing. Proc. ACM Manag. Data 1, 3 (SIGMOD), Article 219 (September 2023), 27 pages.

https://doi.org/10.1145/3617339

1 INTRODUCTION
Data analysis often needs to be conducted across multiple organizations. Meanwhile, as data gets

increasingly valuable, there is also a growing need to protect its security and privacy.

Example 1.1. An insurance company wishes to estimate the budget it should prepare for certain

types of diseases in 2023. This information could be obtained by running a query on the joint

data from the insurance company and the hospitals. For example, several hospitals jointly hold

R(person, year, disease) and the insurance company has relation S(person, cost, rate). A simple

SQL query on these relations can be the following:

Authors’ addresses: Qiyao Luo, qluoak@cse.ust.hk, Hong Kong University of Science and Technology, Hong Kong SAR,

China; Yilei Wang, fengmi.wyl@alibaba-inc.com, Alibaba Group, Hangzhou, China; Ke Yi, yike@cse.ust.hk, Hong Kong

University of Science and Technology, Hong Kong SAR, China; Sheng Wang, sh.wang@alibaba-inc.com, Alibaba Group,

Hangzhou, China; Feifei Li, lifeifei@alibaba-inc.com, Alibaba Group, Hangzhou, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/9-ART219 $15.00

https://doi.org/10.1145/3617339

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

https://doi.org/10.1145/3617339
https://doi.org/10.1145/3617339

219:2 Qiyao Luo et al.

SELECT disease, SUM(cost * rate)
FROM R, S
WHERE R.person = S.person AND R.year = 2023
GROUP BY disease

However, the medical records at the hospitals, as well as the insurance policies, contain sensitive

personal information, and should not be revealed to other parties. A query processing system under

the secure multi-party computation (MPC) model thus meets this requirement.

MPC enables multiple parties to jointly compute a function without disclosing their private input.

Unfortunately, the current MPC-SQL systems are 1000+ times slower than on plaintext [7, 44]. For

instance, it takes SMCQL [7] 1000 seconds to evaluate a query over only 200 tuples. Most existing

works improve the performance by weakening the security guarantee or restricting to a small class

of queries. Conclave [52] relies on a trusted third party; Scape [27] reveals the intermediate join

sizes; Shrinkwrap [8] protects the intermediate join sizes by differential privacy but at a high cost of

at least Ω(𝑛2); Secure Yannakakis [53] strictly follows the MPC security requirement, but supports

only limited types of queries. In this paper, we aim at designing an MPC-SQL system that does not

compromise on security or generality; the sacrifice we make is that only approximate query results

are returned.

In fact, even for query processing over plaintext, where performance is not a big issue unless

running on very large datasets, approximate query processing (AQP) has already been extensively

studied [1, 15, 29, 37, 38, 42]. Thus, AQP is a more valuable approach for MPC even on not-so-large

datasets. Among the many AQP techniques, random sampling is the most appealing due to its

versatility in handling a large class of queries. Meanwhile, there is a rich body of work from the

statistics literature that can be used to derive statistically sound interpretations of the query results

evaluated on the sample. A general rule of thumb is that the (normalized) sampling error is roughly

proportional to 1/
√
𝑠 for sample size 𝑠 . This means that the sample size, hence the query processing

cost, can be sublinear or even independent to the database size 𝑛, which is especially appreciated

when facing large data sets.

Due to the high overhead of MPC protocols, sampling based AQP techniques are in an even

stronger demand than on plaintext. In Example 1.1, since the insurance company does not necessarily

require an exact result, the protocol can work on a sample so as to reduce the query evaluation

time.

Indeed, this motivation is well articulated in SAQE [9], the first MPC-AQP system. Note that the

sample must be taken securely, i.e., no one should know which elements are taken (or not) into the

sample; otherwise, a curious onlooker may be able to deduce unauthorized information by linking

this knowledge with the query result [9]. However, the MPC sampling protocol of [9] has a cost

(both running time and communication) of 𝑂 (𝑛 log𝑛), no matter how small the sample size 𝑠 is.

This may not be faster than exactly computing the query result without sampling, which has 𝑂 (𝑛)
cost for many queries but with a larger hidden constant.

Unfortunately, there is an inherent Ω(𝑛) lower bound for secure sampling (so the algorithm of

[9] cannot be improved by more than a logarithmic factor): If a record is not touched, then it reveals

that it must not be in the sample. To get around this barrier, in this paper, we take a two-stage

approach: In the offline stage (before any query is given), we solve the batch sampling problem,

i.e., generating 𝑛/𝑠 samples of size 𝑠 each, with a total cost of �̃� (𝑛)1. Thus, the amortized cost per

sample is �̃� (𝑠). Then during the online stage, the samples are consumed as queries arrive, such that

the online query processing cost is �̃� (𝑠), similar to the plaintext setting (but with a larger hidden

1
The �̃� notation suppresses polylogarithmic factors.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:3

constant, as we need to run an MPC protocol to evaluate the query on the sample). When samples

are depleted, we re-run the batch sampling to obtain a fresh set of samples. We also support the

case when 𝑠 is given at query time instead of during the offline stage, with a polylogarithmic factor

increase in the offline storage and computation. This idea will be introduced in Section 3.3.

This two-stage approach considerably reduces the response time of queries, as the heavy com-

putation parts have been moved to the offline stage. In fact, most MPC systems already adopt a

two-stage design: Oblivious transfer (OT) extension [32] generates a small number of base OTs

offline, which can then be used to extend to a large number of OTs online; Beaver triples [10] are

generated in an offline stage to accelerate multiplications in the online stage; when data is stored

in multiple tables, it is often denormalized using MPC joins [7, 27, 40, 44, 54] in an offline stage, i.e.,

the fact table is joined with all the dimension tables to form a flat table. In some sense, our proposal

is to decouple the sampling process in such a manner as well, which is necessary to break the Ω(𝑛)
lower bound.

1.1 Contributions
Specifically, we make the following contributions in this paper:

(1) We formally introduce the batch sampling problem under MPC, as a necessary way to

achieving an �̃� (𝑠) cost amortized per sample.

(2) We describe a suite of MPC batch sampling algorithms including shuffle sampling, sampling

with replacement (WR sampling), sampling without replacement (WoR sampling), and strat-

ified sampling. We discuss their pros and cons in terms of cost, independence, sampling

error, and (differential) privacy amplification. The algorithm for WoR sampling under MPC is

particularly nontrivial. We model the problem as a graph, design a circuit for pointer jumping,

and then construct a WoR sampling circuit based on it. We also generalize our WoR sampling

algorithm to support stratified sampling.

(3) Based on our sampling algorithms, we build MASQUE (Multi-party Approximate Secure

QUEry processing), an MPC-AQP system that utilizes two semi-honest non-colluding servers

with any number of data owners. During the offline stage, the data owners first secret-

share their data to the two servers. MASQUE then denormalizes the data using secure joins

and generates a batch of samples. During the online stage, one sample is consumed for

each query received. For all-around privacy protection, MASQUE also optionally injects

differential privacy (DP) noise to the query result before returning it to the designated

receiver. We empirically compare MASQUE with SAQE [9], the previous MPC-AQP system,

and SMCQL [7] and SecYan [53], the state-of-the-art exact MPC query processing engines.

Experimental results show that MASQUE can reduce the online latency of MPC query

processing significantly.

1.2 Related Work
Sampling based AQP techniques have been extensively studied over plaintext data and many AQP

systems exist [1, 15, 29, 31, 37, 42]. Some systems take the sample online after a query arrives

[31, 37], while others also take a two-stage approach, where samples are pre-generated during an

offline stage [1, 29, 42], similar to what we do in this paper. Since an online sample can be taken

in 𝑂 (𝑠) time over plaintext, the two-stage approach offers limited improvement, and which one

performs better delicately depends on the query and data characteristics [15]. This is the major

difference between MPC and the plaintext setting, as taking an online sample under MPC requires

Ω(𝑛) cost, so the two-stage approach has a significant advantage in this case.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:4 Qiyao Luo et al.

Secure multi-party computation (MPC), which enables multiple parties to jointly compute a

function without disclosing any participant’s private input except the function output, was first

conceptualized by Yao in his pioneering paper [56]. Generic protocols, such as Yao’s garbled circuits
[57], GMW [24], and BGW [11], are all based on expressing the computation as an arithmetic or

Boolean circuit. For many problems, such as compaction and expansion (see Section 2.4), circuit-

based protocols are still the best solution, although for certain problems, such as sorting [3, 4, 16, 26],

permutation [16, 41], and private set intersection (PSI) [33, 40, 43], custom protocols have been

developed with lower costs under some particular MPC models.

Several exact MPC query processing engines have been developed [7, 40, 44, 53]. All of them

have a query processing cost of at least Ω(𝑛) with a large hidden constant due to the overhead of

the MPC protocols mentioned above. To lower the query processing cost at the expense of accuracy,

SAQE [9] takes a random sample under MPC and then evaluates the query on the sample. However,

as mentioned, the sampling step still has �̃� (𝑛) cost. In the trusted execution environment (TEE)

model, a batch sampling algorithm has been proposed in [49] with an amortized cost of �̃� (𝑠) per
sample, but their algorithm does not work in the MPC model. There are also some works that

generate secure sample indices with a specific distribution [14, 17, 45, 46] in MPC. They focus

on sampling from a weighted (non-uniform) distribution and output sample indices in plaintext.

However, all of them have Ω(𝑛) sampling cost.

2 PRELIMINARIES
2.1 MPC Basics
In the MPC model, several parties jointly compute a given function. An MPC protocol ensures that

the involved parties only learn the output, while keeping their inputs secret.

Complexity measures. The complexity of an MPC protocol is measured by computation time (the

total computation time of all the parties during the protocol), communication cost (the total size of

messages sent during the protocol), and the number of communication rounds. In the complexity

expressions, we suppress the common factors such as the number of bits used to represent each

tuple and the computational security parameter.

Adversary. The security of an MPC protocol is measured by its ability to defend against some

adversary. A semi-honest adversary can see the transcripts (i.e., all the messages sent and received

during the protocol) of some parties, which we call corrupted parties, and will try to infer information

of other parties based on them. A malicious adversary in addition has the ability to change the

transcript (i.e., deviate from the protocol) arbitrarily during the protocol, for the purpose of stealing

information of other parties.

An adversary can also be either computationally bounded or unbounded. For the former, the

adversary has polynomial time to break the protocol, while there is no limit for the latter. We only

consider a computationally bounded adversary in this paper.

Secret-sharing. During an MPC computation, intermediate and final results are often stored in a

secret-shared form. We adopt the well-known Boolean sharing in the two-party model, where a

value 𝑣 with ℓ bits is split as 𝑣 = J𝑣K0 ⊕ J𝑣K1. The 𝑖-th party holds J𝑣K𝑖 , 𝑖 ∈ {0, 1}, which consists of ℓ

random bits, and ⊕ represents for the logic xor operation.

Circuit. A circuit is a directed acyclic graph (DAG), where each gate (node) is either an input

(node without incoming edges), an operator, or an output (node without outgoing edges). Common

operators include addition, subtraction, multiplication (i.e., arithmetic circuit), logic and, logic xor

(Boolean circuit). When a circuit is evaluated, the inputs go through the wires (edges), transformed

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:5

by the operators, and are finally outputted. Under MPC, the elements on all the gates are in

secret-shared form, so the evaluation process is secure.

Circuits are a powerful tool for MPC, as they separate algorithm (circuit) design from the actual

implementation (the exact form of secret-sharing and which MPC protocol is to be used to evaluate

the gates). One algorithm can thus be used for any MPC variant, no matter how the data are

initially distributed, how many parties there are, how many of them can be corrupted, whether the

adversary is semi-honest or malicious, etc. All these MPC models have been studied in depth in the

security literature, with secret-sharing methods and MPC protocols carefully designed for each.

Thus, one may choose the right implementation for a particular application scenario to plug into

the circuit. For example, Yao’s garbled circuit is suitable for the semi-honest two party model, while

the SPDZ framework [30] is designed for the malicious multi-party setting. Both the computation

time and communication cost are proportional to the size of the circuit (i.e., total number of gates),

while the number of communication rounds is either constant or linear to the depth of the circuit

(i.e., the diameter of the DAG), depending on the protocol.

Although it is possible to automatically transform any algorithm into a circuit, the efficiency

blow up could be very large [39]. Finding a circuit with size complexity the same as the algorithm

is non-trivial or even impossible, and the sampling problem is such an example. In this paper, we

propose the batch sampling problem to break this limitation, and design circuits for it. All the

circuits we design have size matching their RAM counterparts, despite a polylogarithm factor.

The depths of these circuits are also polylogarithm. These circuits directly imply an efficient MPC

protocol.

Using a circuit may not provide the most efficient solution for a particular problem under a

particular MPC model. The most notable example is sorting, where the best circuit has 𝑂 (𝑛 log2 𝑛)
size

2
, but under the two-server model, which is what MASQUE is built upon and more precisely

defined in Section 6, there are 𝑂 (𝑛 log𝑛)-cost sorting protocols [26].

Thus, for the algorithmic results in this paper (i.e., the batch sampling problem), we design a

circuit for its generality and conceptual simplicity. When describing MASQUE in Section 6, we

specialize into the two-server model with more efficient custom protocols for certain parts of the

circuit (in particular, sorting). Furthermore, we use ABY [18], a well-known 2PC framework that

can evaluate garbled circuits with Boolean-shared inputs and produce Boolean-shared outputs.

Security definition. We follow the standard security definition in MPC, which is based on the

real-ideal paradigm. In the “ideal world”, there exists a trusted third party which collects all the

data from the parties, computes the function locally, and sends the output to the parties. The view
of a party (in either the ideal or real world) consists of its private input, and messages it sent and

received during the protocol (including the output). The view of an adversary includes the views

of all the corrupted parties. A real-world protocol is secure if for any input and any adversary A,

there exists a simulator in the ideal world which can produce a view of A that is computationally

indistinguishable from A’s real-world view (i.e., A cannot tell whether the views are from the

real-world or the ideal-world with more than negligible probability). Note that for functions that

involve internal randomness (e.g., compute a function from a random sample), the randomness is

not in the view of the adversary.

The security of an MPC protocol is specified by two parameters: the computational security

parameter 𝜅 and the statistical security parameter 𝜎 . The former indicates the difficulty for a

computationally bounded adversary to break the protocol, which decides the encryption key length;

the latter corresponds to a failure probability of 2
−𝜎

(either security is broken or the algorithm fails

to return the correct result) even assuming an unbounded adversary. For the circuit itself, only 𝜎

2
Theoretically,𝑂 (𝑛 log𝑛)-size sorting circuits exist, but the hidden constant is impractically large.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:6 Qiyao Luo et al.

Methods Independence Sampling error Privacy amplification Circuit depth Circuit size

Shuffle sampling No 𝑂

(
1√
𝑠
·
√︁

𝑛−𝑠
𝑛

)
(𝜀, 0)∗ 𝑂 (log2 𝑛) 𝑂 (𝑛 log2 𝑛)

WR sampling Yes 𝑂

(
1√
𝑠

) (
𝑠
𝑛
· 𝜀,𝑂

(
𝑠2

𝑛2
· 𝜀
))★

𝑂 (log2 𝑛) 𝑂 (𝑛 log2 𝑛)

WoR sampling Yes 𝑂

(
1√
𝑠
·
√︁

𝑛−𝑠
𝑛

) (
𝑠
𝑛
· 𝜀, 0

)†
𝑂 (log2 𝑛 log𝜎) 𝑂 (𝑛 log2 𝑛 log𝜎)

Stratified sampling Yes 𝑂

(
1√
𝑘𝑖
·
√︃

𝑑𝑖−𝑘𝑖
𝑑𝑖

)‡ (
𝑘𝑖
𝑑𝑖
· 𝜀, 0

)
𝑂 (log2 𝑛 log𝜎) 𝑂 (𝑛 log2 𝑛 log𝜎)

∗
Shuffle sampling provides no privacy amplification;

★
WR sampling has 𝜀′ = log((1 − (1 − 1

𝑛
)𝑠) · (𝑒𝜀 − 1) + 1) ≈ 𝑠/𝑛 · 𝜀 and 𝛿′ ≤ ∑𝑠

𝑘=1

(𝑠
2

) (
1

𝑛

)𝑘 (
1 − 1

𝑛

)𝑠−𝑘 (𝜀
2
− 𝜀

2𝑘
) = 𝑂

(
𝑠2

𝑛2
· 𝜀
)
;

†
WoR sampling has 𝜀′ = log(𝑠/𝑛 · (𝑒𝜀 − 1) + 1) ≈ 𝑠/𝑛 · 𝜀 and keeps pure-DP;

‡
Each stratum, which takes 𝑘𝑖 WoR samples from 𝑑𝑖 data, has the same sampling error and privacy amplification as WoR sampling.

Table 1. Comparisons of different sampling methods

matters, while both 𝜅 and 𝜎 should be specified when implementing the gates of a circuit using a

particular MPC protocol. In practice, the value of 𝜎 is often taken to be 40 or 80; for the asymptotic

results in this paper, we assume 𝜎 = Ω(log𝑛).

2.2 Sampling Basics
Sampling is the most simple and popular method for approximate computation. For an input

sequence X = (𝑥1, . . . , 𝑥𝑛), a sampling method returns a multiset 𝑆 such that any 𝑥 ∈ 𝑆 is randomly

taken fromX. Different sampling probability or correlation yields different strategies. We introduce

the common strategies in this section.

Sampling with replacement (WR sampling): Each 𝑥 ∈ 𝑆 is uniformly randomly chosen from X
independently. In this case, we also call 𝑆 aWR sample. Note that even with 𝑠 = 𝑛, not every element

is ensured to appear in the WR sample, because the same element may appear multiple times. Thus

in this case, the sampling error is still non-zero.

The WR sampling algorithm in plaintext is trivial: For each step, randomly draw an integer 𝑖

uniformly from {1, . . . , 𝑛} and take 𝑥𝑖 to the sample, and repeat this step for 𝑠 times. This algorithm

runs in 𝑂 (𝑠) time. However, under MPC model this complexity is not achievable.

Sampling without replacement (WoR sampling): 𝑆 is a subset of X with size 𝑠 , i.e., elements in 𝑆

are all different. Each subset of 𝑠 elements of X are taken as the sample with equal probability. A

WoR sample usually has better quality than a WR sample (with equal sample size) especially when

𝑠 is close to 𝑛. Specifically, when 𝑠 = 𝑛, 𝑆 = X and there is no sampling error.

The standard WoR sampling algorithm is straightforward: We simply sample an element uni-

formly at random, remove it from X, and repeat the process 𝑠 times. However, this algorithm

is inherently sequential and relies on the power of the RAM. Thus, it cannot be expressed by a

circuit. Instead, we will use another sampling algorithm, known as Floyd’s algorithm [12], shown in

Algorithm 1. For convenience, the described algorithm only returns the indices of the sample. Still,

Floyd’s algorithm is a sequential RAM algorithm. It cannot be directly implemented as a circuit,

as circuit does not support set operations (i.e., line 4, 5, and 7) in constant time. However, we will

show later how to model it as a graph problem, which then can be solved by a circuit.

Stratified sampling: All sampling methods above are uniform in the sense that every element is

sampled with equal probability. Stratified sampling is a variant of WoR sampling, and is a commonly

used non-uniform sampling method, especially useful for group-by queries to ensure that small

groups are also properly represented in the sample. Here, elements in X are divided into 𝑔 strata

where the 𝑗-th stratum has size 𝑑 𝑗 . The sample 𝑆 is the union of 𝑔WoR independent subsamples, the

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:7

𝑗-th subsample of which has size 𝑘 𝑗 and is drawn from the 𝑗-th stratum, where 𝑘 𝑗 is a non-negative

integer decided by a given stratified sampling policy, which will be introduced in Section 5. WoR

sampling can be viewed as a special stratified sampling with 𝑔 = 1. In Example 1.1, the groups for

stratified sampling could be the classes of disease types.

If each stratum appears consecutively in X, it is direct to apply WoR sampling algorithm for each

stratum to get an algorithm for stratified sampling in plaintext, which also has cost 𝑂 (𝑠). However,
the problem becomes nontrivial if all 𝑑 𝑗 , 𝑘 𝑗 , and even 𝑔 are private.

Algorithm 1: Floyd’s sampling algorithm

Input: Data size 𝑛; sample size 𝑠

Output: A set 𝑆 of 𝑠 indices taken from {1, 2, · · · , 𝑛} uniformly without replacement

1 𝑆 ← ∅;
2 for 𝑏 ← 𝑛 − 𝑠 + 1 to 𝑛 do
3 𝑎 ← a uniform random index in {1, 2, · · · , 𝑏};
4 if 𝑎 ∈ 𝑆 then
5 Insert 𝑏 to 𝑆 ;

6 else
7 Insert 𝑎 to 𝑆 ;

8 return 𝑆

2.3 Differential Privacy & Privacy Amplification
While MPC ensures that the transcript of the protocol does not leak any private information, the

output of the public function is still revealed, which may contain private information. Differential
privacy (DP) [22] is possibly the most popular solution to address this issue. An algorithmM is

(𝜀, 𝛿)-differential private if for any two neighbouring inputs I ∼ I′ and any set of outputs 𝑌 ,

Pr[M(I) ∈ 𝑌] ≤ 𝑒𝜀 · Pr[M(I′) ∈ 𝑌] + 𝛿.

Here 𝜀 and 𝛿 are the privacy parameters, where smaller values correspond to stronger privacy

guarantees but lead to larger errors. In particular, it is also called pure-DP if 𝛿 = 0. The Laplace

mechanism is a standard approach to inject DP noises, which can be easily expressed by a circuit

and then implemented in MPC [9].

Sampling is a useful tool in differential privacy, as a DP mechanism running on a random sample

provides higher privacy guarantees than when on the entire input. Formally, ifM is an (𝜀, 𝛿)-DP
mechanism and S is a sampling mechanism, thenM ◦ S satisfies (𝜀 ′, ℎ(𝛿))-DP for some 𝜀 ′ ≤ 𝜀
and some function ℎ. This is known as privacy amplification because the new mechanism has

better (i.e., smaller) 𝜀. Table 1 summaries the privacy amplification bounds for pure-DP for different

sampling methods. Shuffle sampling, which will be introduced in Section 3.1, does not have privacy

amplification [49], and the privacy amplification of WR sampling does not keep pure-DP [5].

Only WoR sampling (and its variant, stratified sampling) provides privacy amplification and keeps

pure-DP at the same time [5].

2.4 Basic Circuits
We introduce some basic circuits, which will be used to construct our batch sampling circuits later.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:8 Qiyao Luo et al.

Uniform Random Number Generator. A circuit has a fixed structure. To support random sampling,

some input wires will need to be fed with random numbers. A random bit under any secret-sharing

method can be easily generated [9, 13]. From these random bits, one can generate a uniformly

random (secret-shared) number from [𝑥] = {1, . . . , 𝑥}, where 𝑥 is also given in a secret-sharing

form. The idea is to take 𝜎 random bits, which combined together form a uniform random number

𝑦 ∈ {0, . . . , 2𝜎 − 1}. Then we return (𝑦 mod 𝑥) + 1. Generating 𝑦 in a range of 2
𝜎
ensures that the

generated random number is 2
−𝜎
-close to uniform, even if 𝑥 does not divide 2

𝜎
. We use URNG(𝑥)

to denote such a random number generator.

Sorting. Sorting circuits, a.k.a. sorting networks, have been studied extensively. The AKS network

[2] achieves the asymptotically optimal𝑂 (𝑛 log𝑛) size and𝑂 (log𝑛) depth, but with a huge hidden

constant. In practice, the Bitonic sorter [6] is widely used, which has𝑂 (𝑛 log2 𝑛) size and𝑂 (log2 𝑛)
depth. In this paper, we use the bitonic sorter in our circuit, denoted by sort, although it will be

replaced by a more efficient sorting algorithm in the two-server MPC model [26], which MASQUE

adopts.

Prefix-sum. The prefix-sum operation takes a sequence 𝑋 = (𝑥1, . . . , 𝑥𝑛) and a binary associative

operator ⊕, and outputs the sequence (𝑥1, 𝑥1 ⊕ 𝑥2, . . . , 𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑛). We call the output the

prefix-⊕ of 𝑋 . If ⊕ can be evaluated by a constant-size circuit, there is a prefix-⊕ circuit with

𝑂 (𝑛) size and 𝑂 (log𝑛) depth [36].

One useful generalization of prefix-sum is segmented prefix-sum. It takes two sequences 𝐴 =

(𝑎1, . . . , 𝑎𝑛) and 𝐵 = (𝑏1, . . . , 𝑏𝑛) as input, where equal elements in 𝐴 must appear consecutively

and form a segment. The outputs are the prefix-sums of each segment in 𝐵. For example, if

𝐴 = (2, 2, 4, 1, 1), then the output is (𝑏1, 𝑏1 + 𝑏2, 𝑏3, 𝑏4, 𝑏4 + 𝑏5). We call the output the prefix-⊕ of

𝐵 segmented by 𝐴. The segmented prefix-sum problem can also be solved by a circuit of 𝑂 (𝑛) size
and 𝑂 (log𝑛) depth [54].

Compaction. The input of the compaction operation consists of two sequences 𝑋 = (𝑥1, . . . , 𝑥𝑛)
and𝑇 = (𝑡1, . . . , 𝑡𝑛), where each 𝑡𝑖 ∈ {0, 1}. Each 𝑥𝑖 with 𝑡𝑖 = 1 is said to bemarked. The compaction

of 𝑋 on 𝑇 returns a permutation of 𝑋 such that all marked elements appear before the unmarked

elements. We require the compaction to be order-preserving, i.e., the relative ordering of the marked

elements must be preserved. We denote this operation as “compact 𝑋 by 𝑇 ”. It can be solved

by a circuit of 𝑂 (𝑛 log𝑛) size and 𝑂 (log𝑛) depth [48]. A special case of compaction is when 𝑋

contains dummy elements (denoted as ⊥) while there is no 𝑇 . In this case, the compaction moves

all non-dummy elements to the front, still in an order-preserving fashion.

Expansion. The expansion operation takes two sequences 𝑋 = (𝑥1, . . . , 𝑥𝑛) and 𝐷 = (𝑑1, . . . , 𝑑𝑛),
where each 𝑑𝑖 is a positive integer that indicates the number of repetitions that 𝑥𝑖 should appear in

the output. The output is a length-𝑚 sequence for𝑚 =
∑𝑛

𝑖=1 𝑑𝑖 :

(𝑥1, . . . , 𝑥1︸ ︷︷ ︸
𝑑1 times

, 𝑥2, . . . , 𝑥2︸ ︷︷ ︸
𝑑2 times

, . . .).

We denote this operation as “expand 𝑋 by 𝐷”.

Expansion circuits have not been explicitly described in the literature. Nevertheless, it is not

hard to modify the algorithm of [35], which is designed under the oblivious RAM model, into an

expansion circuit of 𝑂 (𝑚 log𝑚) size and 𝑂 (log𝑚) depth. The idea works as follow: First calculate
the prefix-sum of 𝐷 , which indicates the first location where each distinct 𝑥𝑖 appears; then put

each 𝑥𝑖 to its destination using the butterfly-like network [25] in a reverse order; and finally copy

each 𝑥𝑖 to fill its following empty locations by another prefix-sum circuit. The concrete circuit is

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:9

described in Algorithm 2, in which the binary operator ⊕ is defined as

𝑥 ⊕ 𝑦 =

{
𝑥, if 𝑦 =⊥;
𝑦, otherwise.

Note that although we present the circuit using pseudocode instead of drawing it out, it should be

clear that it yields a circuit. In particular, the if-then-else can be done by a series of comparison

gates and multiplexers. The same holds for all other circuits presented later in this paper.

Algorithm 2: Expansion circuit

Input: 𝑋 = (𝑥1, . . . , 𝑥𝑛); 𝐷 = (𝑑1, . . . , 𝑑𝑛)
Output: 𝑌 = (𝑦1, . . . , 𝑦𝑚)

1 (𝑒1, . . . , 𝑒𝑛) ← prefix-+ of (0, 𝑑1 − 1, 𝑑2 − 1, . . . , 𝑑𝑛−1 − 1);
2 for 𝑗 ← 1 to𝑚 do in parallel
3 if 𝑗 ≤ 𝑛 then
4 (𝑎 (0)

𝑗
, 𝑏
(0)
𝑗
) ← (𝑥 𝑗 , 𝑒 𝑗);

5 else
6 (𝑎 (0)

𝑗
, 𝑏
(0)
𝑗
) ← (⊥, 0);

7 for ℓ ← 1 to ⌈log𝑚⌉ do
8 𝑠 ← 2

⌈log𝑚⌉−ℓ
;

9 for 𝑗 ← 1 to𝑚 do in parallel
10 if 𝑏 (ℓ−1)

𝑗
< 𝑠 and 𝑎 (ℓ−1)

𝑗
≠⊥ then

11 (𝑎 (ℓ)
𝑗
, 𝑏
(ℓ)
𝑗
) ← (𝑎 (ℓ−1)

𝑗
, 𝑏
(ℓ−1)
𝑗
);

12 else if 𝑗 > 𝑠 and 𝑏 (ℓ−1)
𝑗−𝑠 ≥ 𝑠 then

13 (𝑎 (ℓ)
𝑗
, 𝑏
(ℓ)
𝑗
) ← (𝑎 (ℓ−1)

𝑗−𝑠 , 𝑏
(ℓ−1)
𝑗−𝑠 − 𝑠);

14 else
15 (𝑎 (ℓ)

𝑗
, 𝑏
(ℓ)
𝑗
) ← (⊥, 0);

16 𝑌 ← prefix-⊕ of (𝑎 (ℓ)
1
, . . . , 𝑎

(ℓ)
𝑚);

17 return 𝑌

Primary Key Join. Join, or natural join, is a basic operation in databases. Let 𝑅(𝐴, 𝐵) and 𝑆 (𝐵,𝐶)
be two relations, each of which has 𝑛 tuples. Their join result, 𝑅 Z 𝑆 , is the combination of tuples

of 𝑅 and 𝑆 that have the same value for their common attribute 𝐵, i.e.,

𝑅 Z 𝑆 = {(𝑎, 𝑏, 𝑐) | (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑆}.
Doing the join using a circuit must prepare for the worst case where the output size can be 𝑛2. We

avoid such a large circuit by only using primary key joins, where 𝐵 is the primary key of 𝑅. Such

a join has output size at most 𝑛, and there is a circuit of size 𝑂 (𝑛 log2 𝑛) and depth 𝑂 (log2 𝑛) for
computing it (see Section 5.3 of [54]). This circuit has an output size of 𝑛, which is the maximum

possible join size, although some output elements may be ⊥.

3 BATCH SAMPLING
We propose batch sampling, in which both the input X and output S are a sequence of 𝑛 elements,

such that each 𝑆𝑖 = S[(𝑖 − 1)𝑠 + 1, . . . , 𝑖𝑠], 𝑖 = 1, . . . , 𝑛/𝑠 , is a random sample taken from X. When

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:10 Qiyao Luo et al.

each 𝑆𝑖 is a WR sample, WoR sample, or stratified sample, and all 𝑆𝑖 are independent, we call it batch

WR sampling, batch WoR sampling, or batch stratified sampling, respectively, and their algorithms

in plaintext can be easily obtained by repeatedly generating the corresponding sample for 𝑛/𝑠 times

independently, which have 𝑂 (𝑛) cost. The main algorithmic results of this paper are �̃� (𝑛)-size
circuits for these sampling methods. See Table 1 for a summary.

3.1 Shuffle Sampling
Shuffle sampling differs from batch WR/WoR sampling that all 𝑆𝑖 are not independent. For shuffle

sampling, S is simply a random permutation of X, i.e., each 𝑆𝑖 is a WoR sample and the set of

X is a union of all 𝑆𝑖 . In plaintext, a random permutation on X can be obtained by applying

the Fisher-Yates shuffle algorithm [23]. Due to this simplicity, shuffle sampling is widely used in

stochastic gradient descent. However, since the samples are not independent, it causes issues in

query estimation, fairness, and representativeness in an AQP system [50].

Under MPC, the standard approach to implement shuffle sampling is by first assigning each

element a sufficiently long random key (such that any pair of keys are different) and sorting the

elements by the keys. More precisely, (𝜎 + 2 log𝑛)-bit random keys for 𝑛 elements ensure that

repetitive keys appear with probability at most 2
−𝜎
, by the similar analysis to the birthday problem.

Thus, the shuffle sampling circuit has the same size and depth as that of sorting.

3.2 The Batch WR Sampling Circuit
We introduce our construction to the batch WR sampling circuit. It also serves as an example

to illustrate how to break the Ω(𝑛) lower bound by batch sampling. The key observation is that,

although taking an element from X with a secret random index requires Ω(𝑛) time, generating

such a random index can be done in 𝑂 (1) time by URNG. Therefore, we first generate 𝑒𝑖𝑑 , the

random indices of elements in all the 𝑛/𝑠 samples, along with the corresponding 𝑠𝑖𝑑 , indicating

which sample this element belongs to. Then we use primary key join to connect the indices to their

corresponding elements. Finally sort the elements by 𝑠𝑖𝑑 so elements in the same sample appear

consecutively. See Algorithm 3 for the pseudocode.

Note that the idea also works for batch WoR sampling or batch stratified sampling: Given a

circuit that generates the 𝑠 indices of elements for each sample, we apply the circuit 𝑛/𝑠 times

independently to get 𝑛 indices of elements for the batch of samples, and then map the indices to

the elements by a primary key join. Therefore, we will discuss how to generate the indices of a

WoR sample and a stratified sample in Section 4 and 5 respectively.

Algorithm 3: Batch WR sampling circuit

Input: X = (𝑥1, . . . , 𝑥𝑛)
Output: S = {𝑆𝑖 }𝑛/𝑠𝑖=1

1 Initialize 𝑅1 (𝑋, 𝑒𝑖𝑑) with size 𝑛;

2 Initialize 𝑅2 (𝑒𝑖𝑑, 𝑠𝑖𝑑) with size 𝑛;

3 for 𝑖 ← 1 to 𝑛 do in parallel
4 𝑅1 [𝑖] ← (𝑥𝑖 , 𝑖);
5 𝑅2 [𝑖] ← (URNG(𝑛), ⌈𝑖/𝑠⌉);
6 Compute 𝑇 ← 𝑅1 Z 𝑅2, where 𝑒𝑖𝑑 is the primary key of 𝑅1;

7 Sort 𝑇 on 𝑇 .𝑠𝑖𝑑 ;

8 return 𝑇 .𝑋

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:11

3.3 Online Sample Size
The batch sampling, by definition, requires the sample size 𝑠 given in advance and all samples in

the batch have the same size. In many applications, the user may desire a different sample size

for each query, especially for interactive data analytics. One may start with some rough estimates

(small sample sizes suffice) and then drill down for more accurate answers.

For batch WR sampling or shuffle sampling, it is straightforward to return the first 𝑠 ′ elements

of S to the query, if it specifies sample size 𝑠 ′. This solution does not work for WoR sampling

or stratified sampling, though. To support online sample sizes, we can prepare ⌈log𝑛⌉ batches of
samples in the offline stage, where the sample sizes are 𝑠 = 2, 4, 8, · · · , 2 ⌈log𝑛⌉−1, 𝑛. That is, the 𝑖-th
batch contains 𝑛/2𝑖 samples of size 2

𝑖
. When the user wants a sample of size 𝑠 ′, we take a sample

from the ℓ = ⌈log 𝑠 ′⌉-th batch, which has size 2
ℓ
and is at most twice the required

3
sample size

𝑠 ′. This increases the initial offline cost by a log𝑛 factor. However, it is important to note that

the amortized sampling cost does not increase, because after a batch is depleted, we only need to

replenish that batch.

3.4 Private Data Size
The default constructions of the circuits of batch sampling in this paper assume that the input X
contains no dummy elements. In many MPC applications, dummy elements are often padded to

hide the number of real elements. When taking samples from a dataset with dummies, we should

guarantee that we only sample from the real elements, otherwise the quality of the sample is not

ensured.

Let �̃� ≤ 𝑛 be the number of real elements, which is private. This means that the circuit structure

cannot depend on �̃�. Shuffle sampling does not easily extend to this case.
4
Our circuits for batch

WR sampling, WoR sampling, and stratified sampling, can easily support this scenario with little

overhead, which is an extra compaction that move dummy elements to the end of X, so that the
first �̃� elements are real. Then, for our WR sampling circuit, we simply generate random indices

(𝑆.𝑒𝑖𝑑) in [�̃�] instead of [𝑛]. This idea also works similarly in the WoR sampling circuit or stratified

sampling circuit. We ignore the details in this paper.

4 WOR SAMPLING
In this section, we discuss how to design a circuit with size �̃� (𝑠) and depth �̃� (1) that generates
indices for a WoR sample. As mentioned in Section 3.2, this yields a batch WoR sampling circuit

with size �̃� (𝑛) and depth �̃� (1). Compared with WR sampling, the major difficulty is ensuring the

indices of a WoR sample to be distinct. All existing algorithms in plaintext will lose their high

efficiency under MPC model. For example, simply simulating the Floyd’s algorithm (Algorithm 1)

with a circuit would have 𝑂 (𝑠2) size per sample, as it needs a membership test 𝑏 ∈ 𝑆 in line 4. A

naive circuit for this still requires 𝑂 (𝑠) size. Besides, the algorithm has 𝑠 sequential steps; we must

parallelize it in order to reduce the circuit depth.

Below we show how to transform Floyd’s algorithm into a circuit of size �̃� (𝑠) and depth �̃� (1).
Our idea is to model the execution of Floyd’s algorithm with a directed graph𝐺 = (𝑉 , 𝐸). The nodes
𝑉 = [𝑛] correspond to the indices to be sampled, the edges are 𝐸 = {(𝑎𝑖 , 𝑏𝑖)}𝑠𝑖=1 where 𝑏𝑖 = 𝑛 − 𝑠 + 𝑖
and each 𝑎𝑖 is taken from URNG(𝑏𝑖), and 𝑎𝑖 and 𝑏𝑖 correspond to the values of 𝑎 and 𝑏 respectively

in the 𝑖-th iteration of the loop. Note that 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖 . We allow self-loops, i.e., 𝑎𝑖 = 𝑏𝑖 . Let 𝑆 be

3
We could further sub-sample to obtain the required sample size exactly, but this is often unnecessary: Returning a slightly

larger sample only makes the query more accurate, while incurring the same query processing cost𝑂 (𝑠) .
4
If we only return the random permutation over the �̃� real elements, the output size would reveal �̃�.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:12 Qiyao Luo et al.

the output of Algorithm 1, then 𝑆 ⊆ 𝑉 forms a size-𝑠 WoR sample of [𝑛]. We then discuss how to

find 𝑆 using this graph.

4.1 The Reduced Graph
First we introduce the reduced graph 𝐺 ′(𝑉 ′, 𝐸 ′) of 𝐺 , where 𝑉 ′ is the non-trivial nodes of 𝑉 , i.e.,

𝑉 ′ = {∃𝑏 : (𝑎, 𝑏) ∈ 𝐸 | 𝑎 ∈ 𝑉 } ∪ {∃𝑎 : (𝑎, 𝑏) ∈ 𝐸 | 𝑏 ∈ 𝑉 }.
The edge set 𝐸 ′ is initially ∅. Define 𝑉𝑎 = {𝑏 ∈ 𝑉 | (𝑎, 𝑏) ∈ 𝐸}. For any 𝑎 where 𝑉𝑎 ≠ ∅, assume

the elements in 𝑉𝑎 are 𝑣1, . . . , 𝑣𝑘 in the order 𝑣1 < 𝑣2 < · · · < 𝑣𝑘 , then we insert the set of edges

{(𝑎, 𝑣1), (𝑣2, 𝑣2), . . . , (𝑣𝑘 , 𝑣𝑘)} to 𝐸 ′. The circuit for computing the edges of the reduced graph is

described in Algorithm 4. See Figure 1 for an example.

Algorithm 4: Construct reduced graph

Input: Edges 𝐸 = {(𝑎𝑖 , 𝑏𝑖)}𝑠𝑖=1;
Output: Edges of reduced graph 𝐺 ′

1 Initialize relation 𝑅(𝐴, 𝐵) with 𝐸;
2 Sort 𝑅 by (𝐴, 𝐵);
3 for 𝑖 ← 2 to 𝑠 do in parallel
4 if 𝑅 [𝑖] .𝐴 = 𝑅 [𝑖 − 1] .𝐴 then
5 𝑅 [𝑖] .𝐴← 𝑅 [𝑖] .𝐵

6 return The tuples of 𝑅

Lemma 4.1. Let𝐺 ′(𝑉 ′, 𝐸 ′) be the reduced graph of𝐺 (𝑉 , 𝐸). Each connected component of𝐺 ′ forms
a tree with only one leaf node, except that there may be an extra self-loop at the root node of the tree.
For any node 𝑣 ∈ 𝑉 ′, 𝑣 ∉ 𝑆 if and only if 𝑣 is the leaf of a tree with root 𝑟 ≤ 𝑛 − 𝑠 .

Proof. In the reduced graph 𝐺 ′, it can be easily verified that the in-degree of any node is at

most 1, and the out-degree of any node is also at most 1 if ignoring all self-loops. Therefore, each

connected component of 𝐺 ′ forms a tree with only one root node, except that there may be an

extra self-loop at the root node of the tree. Let 𝑣1, 𝑣2, . . . , 𝑣𝑘 be the nodes of such a tree from root 𝑣1
to the only leaf 𝑣𝑘 , so 𝑣1 < 𝑣2 < · · · < 𝑣𝑘 . We are going to prove that (1) if (𝑣1, 𝑣1) ∉ 𝐸 ′, then 𝑣𝑖 ∈ 𝑆
for any 𝑖 < 𝑘 , while 𝑣𝑘 ∉ 𝑆 ; (2) if (𝑣1, 𝑣1) ∈ 𝐸 ′, then 𝑣𝑖 ∈ 𝑆 for all 𝑖; (3) (𝑣1, 𝑣1) ∉ 𝐸 ′ if and only if

𝑣1 ≤ 𝑛 − 𝑠 . By combining the three results we conclude the proof.

First we prove (1), in which case (𝑣1, 𝑣1) ∉ 𝐸 ′. Since (𝑣1, 𝑣2) ∈ 𝐸, we consider in the algorithm

with the loop when 𝑎 = 𝑣1 and 𝑏 = 𝑣2. In this time 𝑣1 ∉ 𝑆 so the algorithm takes 𝑣1 to 𝑆 and ignore

𝑣2, because otherwise there exists some 𝑣 < 𝑣1 that (𝑣, 𝑣1) ∈ 𝐸, then it implies (𝑣1, 𝑣1) ∈ 𝐸 ′ due to
the construction of𝐺 ′. Therefore, by the algorithm 𝑣1 will be taken to the sample. Then we move to

the loop when 𝑎 = 𝑣2 and 𝑏 = 𝑣3, which runs after 𝑎 = 𝑣1. Since 𝑣2 has only appeared once and was

ignored, 𝑣2 ∉ 𝑆 , so the algorithm takes 𝑣2 to 𝑆 and ignore 𝑣3, and so on, until we move to the loop

with 𝑎 = 𝑣𝑘−1 and 𝑏 = 𝑣𝑘 , and the algorithm takes 𝑣𝑘−1 to 𝑆 and ignore 𝑣𝑘 . Since the out-degree of

𝑣𝑘 is 0, there is no more chance that 𝑣𝑘 is sampled. Therefore, we conclude (1).

Next we prove (2). Since (𝑣1, 𝑣1) ∈ 𝐸 ′, either (𝑣1, 𝑣1) ∈ 𝐸 or there exists 𝑣 < 𝑣 ′ < 𝑣1 such that

(𝑣, 𝑣 ′) ∈ 𝐸 and (𝑣, 𝑣1) ∈ 𝐸. In the former case, 𝑣1 is taken to 𝑆 when 𝑎 = 𝑏 = 𝑣1. In the latter case,

the algorithm meets 𝑎 = 𝑣, 𝑏 = 𝑣 ′ before 𝑎 = 𝑣, 𝑏 = 𝑣1. In the time 𝑎 = 𝑣 and 𝑏 = 𝑣 ′, either 𝑎 ∈ 𝑆
already, or 𝑎 is taken to 𝑆 at this step, so in any case, 𝑎 ∈ 𝑆 after this step. Therefore, in the time

𝑎 = 𝑣 and 𝑏 = 𝑣1, 𝑣1 is taken to 𝑆 because 𝑣 is already in 𝑆 . We then move to 𝑎 = 𝑣1 and 𝑏 = 𝑣2, and

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:13

find that 𝑣1 is already in 𝑆 so 𝑣2 is taken to 𝑆 , and so on, until we move to the loop with 𝑎 = 𝑣𝑘−1
and 𝑏 = 𝑣𝑘 , and the algorithm takes 𝑣𝑘 to 𝑆 because 𝑣𝑘−1 is already in 𝑆 . Therefore, we conclude (2).

Recall that the in-degree of any node in 𝐺 ′ is at most 1. Also note that during the construction

of the reduced graph, the in-degree of any node does not change. Therefore, we prove (3) by noting

the fact that (𝑣1, 𝑣1) ∈ 𝐸 ′ if and only if the in-degree of 𝑣1 is 1 in 𝐺
′
, hence is 1 in 𝐺 , if and only if

𝑣1 = 𝑏𝑖 for some 𝑖 , if and only if 𝑣1 > 𝑛 − 𝑠 .
By combining the results of (1)(2)(3) we conclude the lemma. □

From the lemma we can easily verify that 𝑆 is the set of nodes𝑉 ′ in the reduced graph𝐺 ′ except
those leaf nodes with root at most 𝑛 − 𝑠 . To correctly connect the leaf node to its root, we will need

the pointer jumping technique introduced below.

4.2 Pointer Jumping
Next we introduce the pointer jumping technique. It is a standard technique in parallel computing

to find the roots of all nodes, and can be used in the MPC model. The basic operation of pointer

jumping is to replace each tail of a directed edge to its tail’s (only) tail, if it exists. That is, for

two consecutive direct edge (𝑢, 𝑣), (𝑣,𝑤), pointer jumping changes edge (𝑣,𝑤) to edge (𝑢,𝑤). See
Figure 1(c) for an example. In one round, every pair of consecutive edges is updated simultaneously.

It is easy to verify that after at most ℎ = ⌈log𝑑⌉ jumps, there is an edge between any node’s original

root and itself, where 𝑑 is diameter, i.e., the length of the longest tree in the graph. Each jump can

be directly realized by a primary key join circuit, as shown in Algorithm 5.

Algorithm 5: Pointer jumping circuit

Input: Edges {(𝑎𝑖 , 𝑏𝑖)}𝑠𝑖=1 with all 𝑏𝑖 distinct; number of jumps ℎ

Output: Updated edges after jumping

1 Initialize relation 𝑅(𝐴, 𝐵) with tuples {(𝑎𝑖 , 𝑏𝑖)}𝑠𝑖=1;
2 for 𝑖 ← 1 to ℎ do
3 𝑆 (𝐵,𝐶) ← 𝑅(𝐴, 𝐵) with columns (𝐴, 𝐵) renamed to (𝐵,𝐶);
4 𝑇 (𝐴, 𝐵,𝐶) ← 𝑅 Z 𝑆 , where 𝐵 is the primary key of 𝑅;

5 for 𝑗 ← 1 to 𝑠 do in parallel
6 if 𝑇 [𝑗] .𝐴 =⊥ then
7 𝑇 [𝑗] .𝐴← 𝑇 [𝑗] .𝐵 ; // Leave the edge unchanged if it cannot jump

8 𝑅(𝐴,𝐶) ← 𝑇 (𝐴, 𝐵,𝐶) with column 𝐵 removed;

9 Rename column 𝐶 of 𝑅(𝐴,𝐶) to 𝐵;
10 return The tuples of 𝑅

4.3 The Batch WoR Sampling Circuit
Nowwe are ready to introduce the circuit for generating the indices of aWoR sample in Algorithm 6.

First we follow the Floyd’s algorithm to get {(𝑎𝑖 , 𝑏𝑖)}𝑛𝑖=1 which is also the set of edges in the original

graph 𝐺 . The we reduce the graph to get 𝐺 ′ by Algorithm 4. We then link the nodes of 𝐺 ′ to their

roots by Algorithm 5, and finally carefully choose the set of sample 𝑆 by Lemma 4.1. The size and

depth of the circuit are dominated by the size and depth of the pointer jumping circuit, which are

𝑂 (𝑠ℎ log2 𝑠) and𝑂 (ℎ log2 𝑠) respectively. By taking ℎ = log 𝑠 , the size and depth are𝑂 (𝑠 log3 𝑠) and
𝑂 (log3 𝑠) respectively. We give an example in Figure 1, in which 𝑛 = 20 and 𝑠 = 8.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:14 Qiyao Luo et al.

Algorithm 6: Generate the indices of a WoR sample

Input: Domain size 𝑛; number of jumps ℎ

Output: The indices 𝑆 of a WoR sample

1 Initialize 𝑅(𝐴, 𝐵) with size 𝑠 ;

2 for 𝑖 ← 1 to 𝑠 do in parallel
3 𝑏𝑖 ← 𝑛 − 𝑠 + 𝑖;
4 𝑎𝑖 ← URNG(𝑏𝑖);
5 𝐸 ← {(𝑎𝑖 , 𝑏𝑖)}𝑠𝑖=1;
6 𝐸 ′← the output of Algorithm 4 with input 𝐸;

7 𝐸 ′← the output of Algorithm 5 with input 𝐸 ′ and ℎ;

8 𝑅(𝐴, 𝐵) ← 𝐸 ′;

9 Sort 𝑅 by (𝐴, 𝐵);
10 Initialize an array 𝑆 with size 𝑠;

11 for 𝑖 ← 1 to 𝑠 do in parallel
12 (𝑎, 𝑏) ← (𝑅 [𝑖] .𝐴, 𝑅 [𝑖] .𝐵);
13 if 𝑎 ≤ 𝑛 − 𝑠 and (𝑖 = 𝑠 or 𝑎 ≠ 𝑅 [𝑖 + 1] .𝐴) then
14 𝑆 [𝑖] ← 𝑎;

15 else
16 𝑆 [𝑖] ← 𝑏;

17 return 𝑆

4.4 Reduce the Number of Jumps
Although 𝑑 , the diameter of 𝐺 ′, can be as large as 𝑠 in the worst case, this happens with negligible

probability. If one does not pursue an algorithm that always succeeds and returns a perfect uniform

sample, both the size and the depth of the circuit can be reduced by setting a smaller ℎ.

Lemma 4.2. For any𝑚 ≥ 2𝑒 ln𝑛, the diameter 𝑑 of the reduced graph 𝐺 ′ is larger than𝑚 with
probability at most 𝑛 · 2−𝑚 .

Proof. Let𝐺 𝑗 be the subgraph of𝐺 , obtained by running the Floyd’s algorithm for only the first

𝑗 steps, i.e.,𝐺 𝑗 = (𝑉 , 𝐸 𝑗) where 𝐸 𝑗 = {(𝑎𝑖 , 𝑏𝑖)} 𝑗𝑖=1, 𝑏𝑖 = 𝑛 − 𝑠 + 𝑖 and 𝑎𝑖 is taken from URNG(𝑏𝑖). Let
𝐺 ′𝑗 = (𝑉 ′𝑗 , 𝐸 ′𝑗) be the reduced graph of 𝐺 𝑗 . While inserting (𝑎 𝑗+1, 𝑏 𝑗+1) into 𝐸 𝑗 we easily obtain 𝐺 𝑗+1
from𝐺 𝑗 , we can also verify that by inserting a node 𝑏 𝑗+1 to𝑉 ′𝑗 and an edge (𝑣, 𝑏 𝑗+1) to 𝐸 ′𝑗 , we obtain
𝐺 ′𝑗+1 from 𝐺 𝑗 , where 𝑣 = 𝑏 𝑗+1 if the out-degree of 𝑎𝑖+1 in 𝐺 ′𝑗 is at least 1, and 𝑣 = 𝑎 𝑗+1 otherwise.

Let 𝑙 𝑗 (𝑖) be leaf node of the tree starting from node 𝑖 in 𝐺 ′𝑗 , ignoring all self-loops, while setting

𝑙 𝑗 (𝑖) = 0 if such tree does not exist, i.e., 𝑖 is not the root of any tree. We also define 𝑑 𝑗 (𝑖) as the
height of this tree, and 𝑑 𝑗 (𝑖) = 0 if this tree does not exist. Moving to the 𝑗 + 1-th step, the height

of the tree is increased by 1 if and only if 𝑙 𝑗 (𝑖) < 𝑏 𝑗+1 and 𝑎 𝑗+1 = 𝑙 𝑗 (𝑖). Given 𝑙 𝑗 (𝑖) < 𝑏 𝑗+1, the event
𝑎 𝑗+1 = 𝑙 𝑗 (𝑖) happens with probability 1/(𝑛 − 𝑠 + 𝑗 + 1). Therefore,

Pr[𝑑 𝑗+1 (𝑖) = 𝑑 𝑗 (𝑖) + 1 | 𝐺 ′𝑗] ≤ 1/(𝑛 − 𝑠 + 𝑗).
Let𝑌𝑖 be a Bernoulli variable with parameter 1/(𝑛−𝑠 +𝑖), and E[∑𝑠

𝑖=1 𝑌𝑖] =
∑𝑠

𝑖=1 1/(𝑛−𝑠 +𝑖) ≤ ln𝑛.

Let 𝛿 =𝑚/ln𝑛 ≥ 2𝑒 . By Chernoff bound,

Pr

[
𝑠∑︁
𝑖=1

𝑌𝑖 ≥ 𝑚
]
≤

(
𝑒𝛿−1

𝛿𝛿

) ln𝑛
< 2
−𝑚 .

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:15

1 12 13 14 15 16 17 18 19 202 3 4 5 8 9 10 116 7

(a) The original graph𝐺 with edges𝐸 = {(8, 13), (12, 14), (8, 15), (1, 16), (8, 17), (4, 18), (18, 19), (15, 20) }.

1 12 13 14 15 16 17 18 19 204 8

(b) The reduced graph𝐺′ of𝐺 , where the edges (8, 15) and (8, 17) are replaced by the self-loops

(marked in red) (15, 15) and (17, 17) , respectively.

1 12 13 14 15 16 17 18 19 204 8

(c) After applying pointer jumping to𝐺′, the edge (18, 19) is replaced by (4, 19) and colored in blue.

1 12 13 14 15 16 17 18 19 204 81 4 8 12

(d) The edges that we take the heads to 𝑆 are (4, 18), (15, 15), (15, 20), (17, 17) (orange lines); we
take the tails of other edges to 𝑆 (green lines). Finally 𝑆 = {1, 4, 8, 12, 15, 17, 18, 20}.

Fig. 1. Example of Algorithm 6

This implies Pr[𝑑𝑠 (𝑖) ≥ 𝑚] ≤ 2
−𝑚

. Note that the diameter of 𝐺 ′ is the maximum diameter of its

connected components, which is the maximum height of the trees. Therefore, by union bound,

Pr[𝑑 ≥ 𝑚] = Pr

[
𝑛∨
𝑖=1

𝑑𝑠 (𝑖) ≥ 𝑚
]
≤

𝑛∑︁
𝑖=1

Pr[𝑑𝑠 (𝑖) ≥ 𝑚] ≤ 𝑛 · 2−𝑚 . □

Corollary 4.3. Taking ℎ = ⌈log(𝜎 + 2𝑒 · ln𝑛)⌉, Algorithm 6 fails with probability at most 2−𝜎 ,
where 𝜎 is the statistical security parameter and 𝜎 = Ω(log𝑛). If it succeeds, then it returns a sample
of [𝑛] with statistical distance to a perfect WoR sample with samplei size 𝑠 at most 2−𝜎 . Recall that
we assume 𝜎 = Ω(log𝑛), so ℎ = 𝑂 (log𝜎). Therefore, the circuit has size 𝑂 (𝑠 log2 𝑠 log𝜎) and depth
𝑂 (log2 𝑠 log𝜎).

Finally we conclude the main theorem of this section.

Theorem 4.4. There exists a circuit that generates a batch ofWoR samples with size𝑂 (𝑛 log2 𝑛 log𝜎)
and depth 𝑂 (log2 𝑛 log𝜎). It fails with probability at most 2−𝜎 .

5 STRATIFIED SAMPLING
In stratified sampling, the elements are divided into 𝑔 strata, where the 𝑗-th stratum has size 𝑑 𝑗 .

Stratified sampling is very useful for group-by queries, where each group is a stratum. Suppose

the data is given in a relation 𝑅 that is stratified by attribute 𝑔𝑖𝑑 (i.e., 𝑔𝑖𝑑 is the group-by attribute),

whose values are taken from [𝑔]. Let 𝑘 𝑗 be the number of elements sampled from the 𝑗-th stratum.

If 𝑔, 𝑑 𝑗 , 𝑘 𝑗 are all public, stratified sampling simply reduces to 𝑔 instances of WoR sampling, as

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:16 Qiyao Luo et al.

done in SAQE [9]. Here, we aim at full privacy protection where 𝑔,𝑑 𝑗 , 𝑘 𝑗 are all kept private (e.g., 𝑔

might be the number of customers and the 𝑑 𝑗 ’s are the numbers of orders placed by the customers),

namely, the only information released is the input size 𝑛 and the sample size 𝑠 (from all strata). It

turns out we can achieve full-privacy protection for stratified sampling using a circuit whose size

is the same as that of WoR sampling, which is the special case when there is just one stratum.

5.1 Sizing Policy
How to set the sample size 𝑘 𝑗 for each stratum depends on the stratified sample sizing policy, and

a technical challenge for full-privacy protection is to compute these 𝑘 𝑗 ’s using a circuit under a

given policy. We consider the following two common policies.

Individualized sample sizes. Under this policy, one sets 𝑘 𝑗 = 𝐹 (𝑗, 𝑑 𝑗) for a certain function 𝐹

such that 𝐹 (𝑗, 𝑑 𝑗) ≤ 𝑑 𝑗 and 𝑠 =
∑𝑔

𝑗=1
𝐹 (𝑗, 𝑑 𝑗). For example, 𝐹 (𝑗, 𝑑 𝑗) = 𝑑 𝑗 · 𝑠/𝑛 yields a uniform

policy where the sample size is proportional to the stratum size; other forms of 𝐹 (𝑗, 𝑑 𝑗) may yield a

non-uniform policy that emphasizes certain strata. We assume 𝐹 (𝑗, 𝑑 𝑗) ≥ 1 for all 𝑗 , which implies

𝑔 ≤ 𝑠 .
Given the relation 𝑅, we compute the 𝑘 𝑗 ’s by Algorithm 7. Note that 𝑔 is private and can be as

large as 𝑠 , so we output 𝑠 values 𝑑1, . . . , 𝑑𝑠 , where 𝑑𝑖 is the 𝑖-th stratum size if 𝑖 ≤ 𝑔, and 𝑑𝑖 =⊥
otherwise. Then the sample sizes (𝑘1, . . . , 𝑘𝑠) can be computed by 𝐹 . Note that if 𝑑𝑖 =⊥, then 𝑘𝑖 = 0,

i.e., does not take any element from a dummy stratum.

Algorithm 7: Compute strata sizes and sample sizes

Input: 𝑅(𝑒𝑖𝑑, 𝑔𝑖𝑑)
Output: Strata sizes (𝑑1, . . . , 𝑑𝑠); sample sizes (𝑘1, . . . , 𝑘𝑠)

1 Sort 𝑅 by 𝑔𝑖𝑑 ;

2 (𝑑1, . . . , 𝑑𝑛) ← prefix-+ of (1, 1, . . . , 1) segmented by 𝑅.𝑔𝑖𝑑 ;

3 for 𝑖 ← 1 to 𝑛 − 1 do in parallel
4 if 𝑅 [𝑖] .𝑒𝑖𝑑 = 𝑅 [𝑖 + 1] .𝑒𝑖𝑑 then
5 𝑑𝑖 ←⊥;

6 Compact (𝑑1, . . . , 𝑑𝑛) to size 𝑠;

7 for 𝑖 ← 1 to 𝑠 do in parallel
8 if 𝑑𝑖 =⊥ then
9 𝑘𝑖 ← 0;

10 else
11 𝑘𝑖 ← 𝐹 (𝑖, 𝑑𝑖);

12 return (𝑑1, . . . , 𝑑𝑠), (𝑘1, . . . , 𝑘𝑠)

Threshold policy. Another common sizing policy (e.g., adopted in BlinkDB [1]) first finds a

threshold 𝑘 and then sets 𝑘 𝑗 = min(𝑘, 𝑑 𝑗), where 𝑘 is the maximum integer such that

∑𝑔

𝑗=1
𝑘 𝑗 ≤ 𝑠 .

In other words, those strata with size ≤ 𝑘 will be fully taken to the sample, while for any other

stratum, a WoR sample of size 𝑘 will be taken. This policy has the benefit that all groups are well

represented in the sample. Different from the individualized sizing policy, in threshold policy, 𝑘𝑖
does not only depend on 𝑗 and 𝑑 𝑗 , but all the 𝑑 𝑗 ’s.

Next we discuss how to compute 𝑘 , hence all the 𝑘 𝑗 ’s for the threshold policy. Let {𝑑 𝑗 }𝑠𝑗=1 be
the strata sizes computed by Algorithm 7, where 𝑠 − 𝑔 of them are dummy. We first sort {𝑑𝑖 }𝑔𝑖=1

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:17

in ascending order (putting dummy elements at the end). Abusing notation, we still let {𝑑𝑖 }𝑠𝑖=1 be
sequence after sorting, so that 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑔 and 𝑑𝑔+1 = · · · = 𝑑𝑠 =⊥. Let 𝑡 𝑗 be the total sample

size of all strata when 𝑘 = 𝑑 𝑗 , then

𝑡 𝑗 =


𝑑1 · 𝑔, 𝑗 = 1;

𝑡 𝑗−1 + (𝑑 𝑗 − 𝑑 𝑗−1) · (𝑔 − 𝑗 + 1), 2 ≤ 𝑗 ≤ 𝑔;
⊥, otherwise.

Let 𝑙 be the maximum value such that 𝑠 ≥ 𝑡𝑙 , which can be computed by a prefix-sum circuit and

then taking the last value. Then

𝑘 = ⌊(𝑠 − 𝑡𝑙)/(𝑔 − 𝑙)⌋ + 𝑑𝑙 .
Once 𝑘 is computed, the sample sizes of the strata is are defined by setting 𝑘 𝑗 = min(𝑑 𝑗 , 𝑘). Our
circuit for computing the threshold 𝑘 is described in Algorithm 8, in which the binary operator ⊕
is defined as

(𝑙1, 𝑑1, 𝑡1) ⊕ (𝑙2, 𝑑2, 𝑡2) =
{
(𝑙2, 𝑑2, 𝑡2), if 𝑙2 ≥ 𝑙1;
(𝑙1, 𝑑1, 𝑡1), otherwise.

The circuit has size 𝑂 (𝑠 log2 𝑠) and depth 𝑂 (log2 𝑠).

Algorithm 8: Compute threshold

Input: Strata sizes (𝑑1, . . . , 𝑑𝑠)
Output: The threshold 𝑘

1 (𝑑1, . . . , 𝑑𝑠) ← Sort (𝑑1, . . . , 𝑑𝑠) while putting ⊥ at the end;

2 𝑡1 ← 𝑑1 · 𝑔;
3 for 𝑗 ← 2 to 𝑠 do in parallel
4 𝑡 𝑗 ← (𝑑 𝑗 − 𝑑 𝑗−1) · (𝑔 − 𝑗 + 1);
5 (𝑡1, . . . , 𝑡𝑠) ← prefix-+ of (𝑡1, . . . , 𝑡𝑠);
6 Initialize a relation 𝑅(𝐿, 𝐷,𝑇) with size 𝑠;

7 for 𝑗 ← 1 to 𝑠 do in parallel
8 if 𝑗 ≤ 𝑔 and 𝑡 𝑗 ≤ 𝑠 then
9 𝑅 [𝑗] .𝐿 ← 𝑗 ;

10 else
11 𝑅 [𝑗] .𝐿 ← 0;

12 𝑅 [𝑗] .𝐷 ← 𝑑 𝑗 ;

13 𝑅 [𝑗] .𝑇 ← 𝑡 𝑗 ;

14 𝑅 ← prefix-⊕ of 𝑅;

15 (𝑙, 𝑑, 𝑡) ← 𝑅 [𝑠];
16 𝑘 ← ⌊(𝑠 − 𝑡)/(𝑔 − 𝑙)⌋ + 𝑑 ;
17 return 𝑘

5.2 The Batch Stratified Sampling Circuit
Our circuit for generating the indices of a stratified sample is described in Algorithm 9. Note that

the indices correspond to X after sorting by their strata ids. In this algorithm, 𝑔𝑖𝑑, 𝑅.𝐷, 𝑅.𝐾 are

the ids, sizes, sample sizes of the strata, respectively. 𝑅.𝑂 stands for the index of an element in

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:18 Qiyao Luo et al.

Strata size (𝑑) Sample size (𝑘)

1 1

4 2

6 2

⊥ ⊥
⊥ ⊥

𝑔𝑖𝑑 𝐷 𝐾 𝑃 𝑂
1 1 1 0 1

2 4 2 1 1

2 4 2 1 2

3 6 2 5 1

3 6 2 5 2

𝑎 𝑏
1 1

3 4

4 5

9 10

9 11

𝑆
1

4

3

9

11

𝑎 𝑏
1 1

3 4

3 5

9 10

11 11

Index
Income

(𝒳)
Nation
(𝑔𝑖𝑑)

1 20,000 Canada

2 5,000 China

3 12,000 China

4 3,500 China

5 100,000 China

6 10,000 USA

7 13,000 USA

8 7,000 USA

9 350,000 USA

10 70,000 USA

11 31,000 USA

Compute
strata and
sample size

Expansion
(Algorithm
9 line 1-7)

Generate
random
edges 𝐸
(line 8-12)

Compute
reduced graph,
execute pointer
jumping, and
sort the table
(line 13-15)

Get sample
indices (line
17-25)

Fig. 2. Example of Algorithm 9

its stratum, its value plus the corresponding 𝑅.𝑃 yields the index to the original element in X.
When generating the indices (line 8–24), we use the same solution that we generate indices for a

WoR sample, except that the ranges of the uniform number generators are also determined by the

strata sizes. See Figure 2 for an example of the circuit, in which there are three groups of incomes,

specified by the nation. In the example, we generate the indices of a stratified sample from three

strata with sizes 1,6,6 and sample sizes 1,2,2 respectively. The final output is 𝑆 = {1, 3, 4, 9, 11}.
Finally we conclude the main theorem of this section.

Theorem 5.1. There exists a circuit of size 𝑂 (𝑛 log2 𝑛 log𝜎) and depth 𝑂 (log2 𝑛 log𝜎) that gen-
erates a batch of stratified samples under the individualized and the threshold policy. It fails with
probability at most 2−𝜎 .

6 MASQUE: A SAMPLING-BASED MPC-AQP SYSTEM
6.1 System Overview
We build MASQUE, our sampling-based two-stage MPC-AQP system in the two-server model. The

two-server model splits the input parties (i.e., data owners) and computing parties by introducing

two semi-honest, non-colluding servers for computation. Data owners do not trust any single party,

and distribute trust across the two servers by secret-sharing their private data. Data are contributed

by any number of data owners, which may partition the data either horizontally (each data owner

contributes a subset of tuples of the same table), vertically (each data owner contributes a different

table), or in a mixed fashion. Note that the two-server model is more general than the two-party

model in [53] (where the two servers are also the two data owners) and more secure and easier

to deploy than the three-server honest majority model [27]. And it reduces the pairwise secure

communication costs between data owners if all data owners are involved in the computation.

During the offline stage, MASQUE performs the following tasks:

(1) The data owners compute the secret shares of their data (e.g., Boolean shares), and send the

shares to the two servers, respectively.

(2) Using any secure join protocol that works under the two-server model [7, 54], the two servers

denormalize the data and obtain a flat table in secret-shared form.

(3) Evaluate the batch sampling circuits described above on the flat table to prepare a batch of

samples.

During the online stage, the following happens with each query:

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:19

Algorithm 9: Generate the indices of a stratified sample

Input: Strata sizes (𝑑1, . . . , 𝑑𝑠); sample sizes (𝑘1, . . . , 𝑘𝑠)
Output: The indices 𝑆 of a stratified sample

1 (𝑝1, . . . , 𝑝𝑠) ← prefix-+ of (0, 𝑑1, . . . , 𝑑𝑠−1);
2 𝑔𝑖𝑑 ← Expand (1, 2, . . . , 𝑠) by (𝑘1, . . . , 𝑘𝑠);
3 Initialize a relation 𝑅(𝐷,𝐾, 𝑃,𝑂);
4 𝑅.𝐷 ← Expand (𝑑1, . . . , 𝑑𝑠) by (𝑘1, . . . , 𝑘𝑠);
5 𝑅.𝐾 ← Expand (𝑘1, . . . , 𝑘𝑠) by (𝑘1, . . . , 𝑘𝑠);
6 𝑅.𝑃 ← Expand (𝑝1, . . . , 𝑝𝑠) by (𝑘1, . . . , 𝑘𝑠);
7 𝑅.𝑂 ← prefix-+ of (1, . . . , 1) segmented by 𝑔𝑖𝑑 ;

8 for 𝑖 ← 1 to 𝑠 do in parallel
9 (𝑑, 𝑘, 𝑝, 𝑜) ← 𝑅 [𝑖];

10 𝑏𝑖 ← 𝑑 − 𝑘 + 𝑜 + 𝑝;
11 𝑎𝑖 ← URNG(𝑑 − 𝑘 + 𝑜) + 𝑝;
12 𝐸 ← the output of Algorithm 4 with input {(𝑎𝑖 , 𝑏𝑖)}𝑠𝑖=1;
13 𝐸 ′← the output of Algorithm 5 with input 𝐸 ′ and ℎ = ⌈log(𝜎 + 2𝑒 · ln𝑛)⌉;
14 {(𝑎𝑖 , 𝑏𝑖)}𝑠𝑖=1 ← Sort 𝐸 ′ by {𝑎𝑖 } then {𝑏𝑖 };
15 Initialize an array 𝑆 with size 𝑠;

16 for 𝑖 ← 1 to 𝑠 do in parallel
17 (𝑑, 𝑘, 𝑝, 𝑜) ← 𝑅 [𝑖];
18 if 𝑎𝑖 ≤ 𝑝 + 𝑑 − 𝑘 and (𝑖 = 𝑠 or 𝑎𝑖 ≠ 𝑎𝑖+1) then
19 𝑆 [𝑖] ← 𝑎𝑖 ;

20 else
21 𝑆 [𝑖] ← 𝑏𝑖 ;

22 return 𝑆

(1) A client (who might be one of the data owners) submits the query to one of the servers with

an optionally specified sample size.

(2) The server forwards the query to all data owners for validation, and the data owners decide

if differential privacy (DP) should be applied to sanitize the query result. For example, in

Example 1.1, if the query asks for a particular patient’s medical record, the hospitals can

reject answering the query. If the query asks for some aggregates, then the hospitals can

choose to answer the query with an appropriate differential privacy parameter 𝜀 and global

sensitivity 𝐺𝑆 .

(3) The two servers construct a query evaluation circuit, and evaluate it on a sample, obtaining the

query result in secret-shared form. When all samples are depleted, a new batch is generated.

(4) If DP is required by the data owners, the two servers build another circuit to inject noise to

the query result.

(5) The two servers send the shares of the query result to the client for reconstruction.

6.2 Security Guarantee
MASQUE defends against a semi-honest, computationally bounded adversary, who might corrupt

any number of data owners, the client, and at most one server. We provide full-fledged protection

before, during, and after query processing: as long as the two servers do not collude, our system

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:20 Qiyao Luo et al.

guarantees that all parties learn nothing, except that the client will learn the output of the query,

which could be further protected by DP.

The ideal functionality for MASQUE are presented in Functionality 10 (offline stage) and Func-

tionality 11 (online stage), where we use J·K to denote a value that is presented in secret-shared

form. Since the input and output of the functionality are in secret-shared form, the servers actually

learn nothing (including input data, sample data, and query results) during the protocol.

Algorithm 10: Offline Ideal Functionality Foffline

Input: JXK = (J𝑥1K, . . . , J𝑥𝑛K), sample size 𝑠

Output: A batch of samples JSK = (J𝑆1K, . . . , J𝑆𝑛/𝑠K), each with sample size 𝑠

1 Recover X from JXK;
2 Take a batch of samples S from X;
3 Compute the secret share JSK of S;
4 return JSK

Algorithm 11: Online Ideal Functionality Fonline
Input: Aggregate query 𝑄 ; a batch of samples JSK; DP parameter 𝜀,𝐺𝑆

Output: Query result J𝑞K
1 J𝑆K← a sample from JSK;
2 Remove J𝑆K from JSK;
3 Recover 𝑆 from J𝑆K;
4 𝑞 ← 𝑄 (𝑆) + 𝐿𝑎𝑝 (𝐺𝑆 ·𝑠

𝜀𝑛
);

5 Compute the secret share J𝑞K of 𝑞;
6 return J𝑞K

6.3 MPC Protocols Optimization
MASQUE mostly uses Yao’s garbled circuit protocol to evaluate a given circuit, but with the

following optimizations:

(1) As mentioned previously, there is a more efficient sorting protocol under the two-server

model [26]. So we replace each sorting component of the circuit with this protocol.

(2) The garbled circuit protocol operates on the bit level. For Boolean operations, such as AND

and XOR, the GMW protocol is more efficient. Thus, when facing such operations, we invoke

GMW through ABY [18].

(3) To evaluate bitwise AND gates more efficiently, we also generate Beaver multiplication triples

[10] in the offline stage, which are then consumed during an online query.

6.4 OnlineQuery Evaluation
The online query evaluation process of MASQUE largely follows SAQE [9], except that the samples

are generated in batches. Specifically, we take the following steps for each online query:

(1) The query is first parsed. If it is a group-by query, a stratified sample is used; otherwise a

WoR sample is used.

(2) A query plan is formed that consists of a projection, which prunes unnecessary columns, a

selection operator with the predicates in the WHERE clause of the query, and an aggregation

operator (possibly with a group-by).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:21

(3) A circuit is generated following the query plan, which is then evaluated using a combination

of garbled circuits and GMW.

(4) If differential privacy is required, the two servers construct a circuit to generate a noise and

add it to the query result. There is a lot of research discussing how to properly compute a

noise under DP [19–21, 28, 34, 51], which we can adopt in our system. In particular, we adopt

the following scheme. Let𝐺𝑆 be the global sensitivity of the query and we use a WoR sample

with size 𝑠 to answer the query. Then we add a noise drawn from a Laplacian distribution

with scale parameter
𝐺𝑆 ·𝑠
𝜀𝑛

to obtain an 𝜀-DP query result.

(5) If the aggregation function is count or sum, we need to scale up the result by a factor of 𝑛/𝑠 ,
i.e., if we sample 10% data for count, the query result on the sample will be roughly 1/10 of
that on the original data. So we need scale up the result by 10 for an unbiased estimation.

Note that this can be done by the client in plaintext since 𝑛, 𝑠 are public parameters. However,

for group-by queries, the scaling factor is 𝑑𝑖/𝑘𝑖 , which is private. Then we use a garbled

division circuit [18, 55] to re-scale the query result.

7 EXPERIMENTS
7.1 Experimental Setup
We compare MASQUE

5
with SAQE [9], SMCQL [7], and SecYan [53]. SAQE is the only MPC-AQP

system in the past, while the latter are exact MPC query engines. All experiments were performed

in a LAN setting, with a small network delay (around 0.1ms) and high bandwidth around 1Gb/s. The

running times are measured on two servers, each equipped with 48 Intel Xeon Silver 4116 CPUs (but

only one thread is used) and a large enough memory that can contain all the data. This models the

common situation where the two non-colluding servers are hosted by two major cloud providers

with a dedicated link. The security parameters are 𝜎 = 40 and 𝜅 = 128 (that is, 128-bit encryption

key). The bit length of all attributes is 32. All the results are the average over 10 repetitions.

7.2 Offline: Sample Generation
We compare our sample generation circuits against that used in SAQE [9], which generates a Poisson

sampling of size 𝑠 with compaction. SAQE generates one sample with cost 𝑂 (𝑛 log𝑛), while our
amortized per-sample cost is 𝑂 (𝑠 log𝑛) (for shuffle sampling and WR sampling) or 𝑂 (𝑠 log𝑛 log𝜎)
(for WoR sampling and stratified sampling). Note that SAQE also provides stratified sampling, but

it simply runs the sampling algorithm on each stratum, thereby revealing the number of strata and

strata sizes, while our stratified sampling algorithm does not.

Table 2 shows the amortized sampling costs of different algorithms for sample size 𝑠 = 50 and

various database size 𝑛. Note that the costs of MPC protocols by definition are independent on

the data, so the actual contents of the inputs do not affect the results. Shuffle sampling always

performs the best in both time and communication cost, due to its simplicity. WR sampling performs

5 times better than WoR sampling in terms of time cost, because of more rounds of sort from

pointer jumping circuit. Stratified sampling has a similar cost as WoR sampling. Figure 3 shows

the amortized cost per sample for a fixed data size while varying the sample rate 𝑠/𝑛. We see that

SAQE has a fixed cost no matter how small the sample size is. It performs well when sample rate is

large, i.e., greater than 5%. However, recall that the sampling error depends on the absolute sample

size 𝑠 (see Table 1), so the sampling rate for achieving a desired error reduces for large data sets.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:22 Qiyao Luo et al.

Methods

𝑛 = 10
3 𝑛 = 10

4 𝑛 = 10
5

Time (s) Com. (MB) Time (s) Com. (MB) Time (s) Com. (MB)

Shuffle Sampling 0.0675 2.67 0.0765 3.68 0.1 5.75

Sampling With Replacement 0.795 44.8 1.02 57.5 1.42 72.9

Sampling Without Replacement 3.88 165 5.50 212 9.65 273

Poisson Sampling [9] 3.49 25.3 42.1 254 665 2580

Stratified Sampling 3.93 165 5.60 215 9.75 270

Table 2. Amortized time and communication costs per sample of different methods on simulated dataset
with different sizes

0.2% 2% 20%
Sample rate

10 1

100

101

102

103

Ti
m

e
(s

)

Shuffle sampling
WR sampling
WoR sampling
Poisson sampling

0.2% 2% 20%
Sample rate

100

101

102

103

104

Co
m

m
un

ica
tio

n
(M

B)

Fig. 3. Time and communication costs per sample with different sample rates

7.3 Online:Query Evaluation
Next, we compare the online query processing costs.We evaluated a 10MBTPC-H dataset containing

60,000 tuples in total, such that the baseline methods can still finish in a reasonable amount of time,

and reported four representative queries:

• Q1. It computes 6 aggregates (count and sum) over the lineitem table grouped by returnflag
and linestatus. The query also contains a few avg aggregates, which can be easily obtained

from count and sum.

• Q1U. This is simplified version of Query 1 where we remove the group-by operator.

• Q8. This is a complicated analytical query involving selections, joins, and group-by aggrega-

tions. All the joins have been done in the offline stage, while the online stage computes the

query with the specified selection conditions (i.e., the nation and region).

• Q9. This query calculates the sum of profits grouped by the nations.

We compare the online query processing costs of MASQUE against SMCQL [7], SAQE [9], and

SecYan[53]. For SMCQL and SAQE, all joins are also performed in an offline stage to denormalize

the data. On the other hand, SecYan performs the joins online. We also tested the processing costs

over plain text (using MySQL) for benchmarking.

(1) SMCQL [7]: SMCQL builds and evaluates a garbled circuit to compute the query result exactly.

(2) SAQE [9]: It first uses a compaction circuit to extract samples, then evaluates a garbled

circuit on the sample. Note that for group-by queries (Q1, Q8 and Q9), SAQE provides a

weaker security protection, because its stratified sampling algorithm reveals the sizes of

the strata (after adding DP noise). On the other hand, the stratified sampling algorithm in

MASQUE does not reveal anything other than the query result (after adding DP noise).

5
https://github.com/hkustDB/MASQUE

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

https://github.com/hkustDB/MASQUE

Secure Sampling for Approximate Multi-partyQuery Processing 219:23

0.2% 2% 20%
10 1

100

101

102

103
Q1

Ti
m

e
(s

)
Plain text SMCQL MASQUE SAQE SecYan

0.2% 2% 20%

101

102

103

104

Co
m

m
un

ica
tio

n
(M

B)
0.2% 2% 20%

10 1

100

101

102

Q1
U

Ti
m

e
(s

)

0.2% 2% 20%

101

102

103

Co
m

m
un

ica
tio

n
(M

B)

0.2% 2% 20%
10 1

100

101

102

Q8
Ti

m
e

(s
)

0.2% 2% 20%

101

102

103

104

Co
m

m
un

ica
tio

n
(M

B)

0.2% 2% 20%
Sample rate

100

101

102

103

Q9
Ti

m
e

(s
)

0.2% 2% 20%
Sample rate

101

102

103

104

Co
m

m
un

ica
tio

n
(M

B)

Fig. 4. Time and communication costs with different sample sizes on TPC-H

(3) SecYan [53]: SecYan is a secure two-party protocol especially designed for computing free-

connex join-aggregate queries exactly. Q1 and Q1U do not have joins, so SecYan degenerates

into the same garbled circuit as used in SMCQL. Q8 is a free-connex query. Q9 is not per se,

and SecYan decomposes it into 25 such queries, one for each group (nation).

We experimented with sampling rates from 0.1% to 20% for MASQUE and SAQE. Figure 4 shows

the time and communication costs of these systems. Note that both axes are drawn in log scale. As

expected, MASQUE’s costs are proportional to the sample size, where the other systems are not

affected by the sampling rate: The exact query processing engines are not affected by the sampling

rate by definition. The sampling cost of SAQE is 𝑂 (𝑛 log𝑛) and independent of the sample size,

which is followed by an 𝑂 (𝑠) query processing cost. Since the sampling cost dominates, the total

cost is not significantly affected.

From the results, we see that the two MPC-AQP systems mostly outperform the exact MPC

engines, except that SecYan is better than SAQE on Q8, which is a free-connex query that SecYan

specializes on. However, the advantage of SAQE over SMCQL or SecYan is not obvious. Recall

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

219:24 Qiyao Luo et al.

105 106
0.1

1

10

100

1000
3600

Re
sp

on
se

 ti
m

e
(s

)
Q1

Plain text SMCQL MASQUE SAQE SecYan

105 106

0.1

1

10

100

1000
3600

Q1
U

105 106

Data size

0.1

1

10

100

1000
3600

Re
sp

on
se

 ti
m

e
(s

)
Q8

105 106

Data size

0.1

1

10

100

1000

3600

Q9

Fig. 5. Response time with different data sizes on TPC-H

that the former has an asymptotic cost of 𝑂 (𝑛 log𝑛) while the latter computes the exact query

result with 𝑂 (𝑛) cost but with a larger hidden constant. On the other hand, MASQUE significantly

outperforms SAQE and the exact query processing engines, especially for smaller sampling rates,

truly exploiting the accuracy-cost trade-off for sampling-based AQP.

We also evaluated the response time (i.e., the online query time) on different scales of data. We

generated different of TPC-H datasets, with sizes varying from 10MB to 1GB, containing 6 × 104 to
6 × 106 tuples. Sample rate is set to 2% for two MPC-AQP systems (MASQUE and SAQE). We only

report the response time within an hour, as shown in Figure 5. We found that SMCQL and SAQE

cannot scale to TPC-H 100MB dataset which contains 6 × 105 tuples. SecYan performed well in

free-connex query (i.e., Q8), and cannot scale to larger dataset in non-free-connex query (i.e., Q9).

MASQUE, on the other hand, can scale to 1GB data with 6 × 106 tuples. And our response time

is always less than all other secure MPC engines. The results show the fact that our AQP-MPC

system is suitable for large amounts of data.

8 CONCLUSIONS
In this paper, we have presented MASQUE, an MPC-AQP system based on random sampling. By

separating the sampling into an offline and an online stage, we are able to significantly reduce the

online query processing cost, which is important for interactive exploration of private data. One

direction for future improvement is the offline cost. Currently, it takes an hour for MASQUE to

generate a batch of WoR samples from a 10MB dataset. This is partly due to the strong security

guarantee that MASQUE aims to achieve (i.e., revealing nothing beyond the DP-protected query

result). With slightly weaker security guarantees, such as differential obliviousness [47], we believe
it is possible to reduce this high offline cost, and this remains an interesting future direction.

ACKNOWLEDGMENTS
This work has been supported by HKRGC under grants 16201819, 16205420, and 16205422, and by

Alibaba Group through Alibaba Innovative Research Program. We thank the anonymous reviewers

for valuable suggestions on improving the paper.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

Secure Sampling for Approximate Multi-partyQuery Processing 219:25

REFERENCES
[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica. 2013. BlinkDB:

Queries with Bounded Errors and Bounded Response Times on Very Large Data. In Proceedings of the 8th ACM European
Conference on Computer Systems. 29–42.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. 1983. An Θ(n log n) Sorting Network. In Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing. 1–9.

[3] Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi. 2020. Bucket Oblivious Sort:

An Extremely Simple Oblivious Sort. In 3rd Symposium on Simplicity in Algorithms, SOSA 2020, Martin Farach-Colton

and Inge Li Gørtz (Eds.). 8–14.

[4] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas, Katsumi Takahashi, and Junichi

Tomida. 2022. Efficient Secure Three-Party Sorting with Applications to Data Analysis and Heavy Hitters. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security (Los Angeles, CA, USA). 125–138.

[5] Borja Balle, Gilles Barthe, and Marco Gaboardi. 2018. Privacy Amplification by Subsampling: Tight Analyses via

Couplings and Divergences. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems. 6280–6290.

[6] K. E. Batcher. 1968. Sorting Networks and Their Applications. In Proceedings of the AFIPS Spring Joint Computing
Conference. 307–314.

[7] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie Rogers. 2017. SMCQL: Secure Querying

for Federated Databases. Proceedings of the VLDB Endowment 10, 6 (2017), 673–684.
[8] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers. 2018. Shrinkwrap: Efficient SQL

Query Processing in Differentially Private Data Federations. Proc. VLDB Endow. 12, 3 (nov 2018), 307–320. https:

//doi.org/10.14778/3291264.3291274

[9] Johes Bater, Yongjoo Park, Xi He, XiaoWang, and Jennie Rogers. 2020. SAQE: Practical Privacy-Preserving Approximate

Query Processing for Data Federations. Proc. VLDB Endow. 13, 12 (jul 2020), 2691–2705.
[10] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization. In Advances in Cryptology — CRYPTO

’91. 420–432.
[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness Theorems for Non-Cryptographic Fault-

Tolerant Distributed Computation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing.
1–10.

[12] Jon Bentley and Bob Floyd. 1987. Programming Pearls: A Sample of Brilliance. Commun. ACM 30, 9 (1987), 754–757.

[13] Manuel Blum. 1983. Coin Flipping by Telephone a Protocol for Solving Impossible Problems. SIGACT News 15, 1 (1983),
23–27.

[14] Jeffrey Champion, abhi shelat, and Jonathan Ullman. 2019. Securely Sampling Biased Coins with Applications to

Differential Privacy. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
603–614.

[15] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query Processing: No Silver Bullet. In

Proceedings of the 2017 ACM International Conference on Management of Data. 511–519.
[16] Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi, and Benny Pinkas. 2019. An Efficient Secure

Three-Party Sorting Protocol with an Honest Majority. Cryptology ePrint Archive, Paper 2019/695. https://eprint.iacr.

org/2019/695 https://eprint.iacr.org/2019/695.

[17] Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu, and Arkady Yerukhimovich. 2022. Secure

Sampling with Sublinear Communication. Cryptology ePrint Archive, Paper 2022/660. https://eprint.iacr.org/2022/660

https://eprint.iacr.org/2022/660.

[18] Cryptography and Privacy Engineering Group at TU Darmstadt. [n. d.]. A Framework for Efficient Mixed-Protocol

Secure Two-Party Computation. https://github.com/encryptogroup/ABY.

[19] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. 2022. R2T: Instance-optimal Truncation

for Differentially PrivateQuery Evaluation with Foreign Keys. In Proceedings of the 2022 ACM SIGMOD International
Conference on Management of Data.

[20] Wei Dong and Ke Yi. 2021. Residual Sensitivity for Deferentially Private Multi-Way Joins. In Proceedings of the 2021
ACM SIGMOD International Conference on Management of Data.

[21] Wei Dong and Ke Yi. 2022. A Nearly Instance-optimal Differentially Private Mechanism for Conjunctive Queries. In

Proceedings of the ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
[22] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of differential privacy. Foundations and Trends® in

Theoretical Computer Science 9, 3–4 (2014), 211–407.
[23] Ronald Aylmer Fisher and Frank Yates. 1953. Statistical tables for biological, agricultural and medical research. Hafner

Publishing Company.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

https://doi.org/10.14778/3291264.3291274
https://doi.org/10.14778/3291264.3291274
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2022/660
https://eprint.iacr.org/2022/660
https://github.com/encryptogroup/ABY

219:26 Qiyao Luo et al.

[24] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing. 218–229.

[25] Michael T. Goodrich. 2011. Data-Oblivious External-Memory Algorithms for the Compaction, Selection, and Sorting

of Outsourced Data. In Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and
Architectures (San Jose, California, USA) (SPAA ’11). Association for Computing Machinery, New York, NY, USA,

379–388. https://doi.org/10.1145/1989493.1989555

[26] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. 2013. Practically Efficient Multi-party

Sorting Protocols from Comparison Sort Algorithms. In Information Security and Cryptology – ICISC 2012. 202–216.
[27] Feng Han, Lan Zhang, Hanwen Feng, Weiran Liu, and Xiangyang Li. 2022. Scape: Scalable Collaborative Analytics

System on Private Database with Malicious Security. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). 1740–1753.

[28] Noah Johnson, Joseph P Near, and Dawn Song. 2018. Towards practical differential privacy for SQL queries. Proceedings
of the VLDB Endowment 11, 5 (2018), 526–539.

[29] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert Grandl, Surajit Chaudhuri, and Bolin

Ding. 2016. Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters. In Proceedings of the 2016
International Conference on Management of Data. 631–646.

[30] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computation. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 1575–1590.

[31] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and Ronitt Rubinfeld. 2015. Rapid Sampling

for Visualizations with Ordering Guarantees. Proc. VLDB Endow. 8, 5 (2015), 521–532.
[32] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT Extension for Transferring Short Secrets. In Advances

in Cryptology – CRYPTO 2013. 54–70.
[33] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Efficient Batched Oblivious PRF with

Applications to Private Set Intersection. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York, NY, USA, 818–829.

https://doi.org/10.1145/2976749.2978381

[34] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanavajjhala, Michael Hay, and Gerome

Miklau. 2019. PrivateSQL: a differentially private SQL query engine. Proceedings of the VLDB Endowment 12, 11 (2019),
1371–1384.

[35] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient Oblivious Database Joins. Proc. VLDB
Endow. 13, 12 (jul 2020), 2132–2145. https://doi.org/10.14778/3407790.3407814

[36] Richard E. Ladner and Michael J. Fischer. 1980. Parallel Prefix Computation. J. ACM 27, 4 (1980), 831–838.

[37] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggregation via Random Walks. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco, California, USA). 615–629.

[38] Kaiyu Li, Yong Zhang, Guoliang Li, Wenbo Tao, and Ying Yan. 2019. Bounded Approximate Query Processing. IEEE
Transactions on Knowledge and Data Engineering 31, 12 (2019), 2262–2276. https://doi.org/10.1109/TKDE.2018.2877362

[39] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks. 2014. Automating Efficient RAM-Model Secure

Computation. In 2014 IEEE Symposium on Security and Privacy. 623–638. https://doi.org/10.1109/SP.2014.46

[40] Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins and PSI for Secret Shared Data. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1271–1287.
[41] Payman Mohassel and Saeed Sadeghian. 2013. How to Hide Circuits in MPC an Efficient Framework for Private

Function Evaluation. In Advances in Cryptology – EUROCRYPT 2013, Thomas Johansson and Phong Q. Nguyen (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 557–574.

[42] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. VerdictDB: Universalizing Approximate

Query Processing. In Proceedings of the 2018 International Conference onManagement of Data. Association for Computing

Machinery, New York, NY, USA, 1461–1476.

[43] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. 2019. Efficient circuit-based psi with

linear communication. In Annual International Conference on the Theory and Applications of Cryptographic Techniques.
122–153.

[44] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and Joseph M. Hellerstein. 2021. Senate: A

Maliciously-Secure MPC Platform for Collaborative Analytics. In Proceedings of the 30th Conference on USENIX Security
Symposium.

[45] Manoj M Prabhakaran and Vinod M Prabhakaran. 2012. On secure multiparty sampling for more than two parties. In

2012 IEEE Information Theory Workshop. 99–103.
[46] Vinod M Prabhakaran and Manoj M Prabhakaran. 2014. Assisted common information with an application to secure

two-party sampling. IEEE Transactions on Information Theory 60, 6 (2014), 3413–3434.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

https://doi.org/10.1145/1989493.1989555
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.14778/3407790.3407814
https://doi.org/10.1109/TKDE.2018.2877362
https://doi.org/10.1109/SP.2014.46

Secure Sampling for Approximate Multi-partyQuery Processing 219:27

[47] Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. 2023. Differentially Oblivious

Relational Database Operators. In VLDB.
[48] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2022. Fast Fully Oblivious Compaction and Shuffling. In Proceedings

of the 2022 ACM SIGSAC Conference on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22).
Association for Computing Machinery, New York, NY, USA, 2565–2579. https://doi.org/10.1145/3548606.3560603

[49] Sajin Sasy and Olga Ohrimenko. 2019. Oblivious Sampling Algorithms for Private Data Analysis.
[50] Yufei Tao. 2022. Algorithmic Techniques for Independent Query Sampling. In PODS.
[51] Yuchao Tao, Xi He, Ashwin Machanavajjhala, and Sudeepa Roy. 2020. Computing Local Sensitivities of Counting

Queries with Joins. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 479–494.
[52] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets, and Azer Bestavros. 2019. Conclave:

Secure Multi-Party Computation on Big Data. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,

Germany) (EuroSys ’19). Association for Computing Machinery, New York, NY, USA, Article 3, 18 pages. https:

//doi.org/10.1145/3302424.3303982

[53] Yilei Wang and Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over Private Data. In Proceedings of the 2021
ACM SIGMOD International Conference on Management of Data.

[54] Yilei Wang and Ke Yi. 2022. Query Evaluation by Circuits. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems.

[55] Jonathan Katz Xiao Wang, Alex J. Malozemoff. [n. d.]. EMP-toolkit: Efficient MultiParty computation toolkit. https:

//github.com/emp-toolkit.

[56] Andrew C Yao. 1982. Protocols for secure computations. In 23rd Annual Symposium on Foundations of Computer Science.
IEEE, 160–164.

[57] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of
Computer Science. 162–167.

Received January 2023; revised April 2023; accepted May 2023

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 219. Publication date: September 2023.

https://doi.org/10.1145/3548606.3560603
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3302424.3303982
https://github.com/emp-toolkit
https://github.com/emp-toolkit

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 MPC Basics
	2.2 Sampling Basics
	2.3 Differential Privacy & Privacy Amplification
	2.4 Basic Circuits

	3 Batch Sampling
	3.1 Shuffle Sampling
	3.2 The Batch WR Sampling Circuit
	3.3 Online Sample Size
	3.4 Private Data Size

	4 WoR Sampling
	4.1 The Reduced Graph
	4.2 Pointer Jumping
	4.3 The Batch WoR Sampling Circuit
	4.4 Reduce the Number of Jumps

	5 Stratified Sampling
	5.1 Sizing Policy
	5.2 The Batch Stratified Sampling Circuit

	6 MASQUE: A Sampling-based MPC-AQP System
	6.1 System Overview
	6.2 Security Guarantee
	6.3 MPC Protocols Optimization
	6.4 Online Query Evaluation

	7 Experiments
	7.1 Experimental Setup
	7.2 Offline: Sample Generation
	7.3 Online: Query Evaluation

	8 Conclusions
	Acknowledgments
	References

