
A

Reward Bound Estimation in Multi-armed Bandit

YILEI WANG, The University of Hong Kong

Algorithms based on upper-confidence bounds are very popular in the multi-armed bandit problem. However,
most of these algorithms assume that the rewards come from a bounded support, say [0, b], in which b is
known by the gambler initially. This report gives an algorithm analysis based on UCB1 algorithm and
considers the case that the rewards are bounded in [a, b] where a and b is unknown to the gambler, and then
use this algorithm to solve an online routing problem.

General Terms: Reward Bound, Bandit, UCB, Multi-armed

1. INTRODUCTION AND NOTATIONS
The multi-armed bandit problem is a problem in which a gambler at a row of K slot
machines, whose rewards are specified by K unknown but fixed distributions. At each
round, the gambler has to decide which machines to play. When played, each machine
(also called arm) provides a random reward according to its distribution. The objective
of the gambler is to maximize the sum of rewards earned after T rounds. We assume
T � K here.

The key to solve this problem is to balance exploration and exploitation. On the one
hand, we want to make sure which machine gives the best reward (exploration). On the
other hand, we want to have more chance to play the best arm so as to get more rewards
(exploitation). There are lots of research on this problem. Among these research, UCB
algorithms are very popular because they are simple and effective. These algorithms
works by computing upper confidence bounds for all the arms and then choosing the
arm with the highest such bound. Our result is based on UCB1, the simplest UCB
algorithm.

We denote the reward received when the k-th arm is pulled the t-th time by Xk,t.
Xk,1, . . . , Xk,T are independent and identically distributed, simply denoted by Xk, and
its expected value denoted by µk. Further, let nk(t) denote the number of times arm k
is chosen during the first t plays and let It denote the index of the arm played at time
t. If we have known the Xk∗ has the greatest expected value µ∗, we would always play
this arm. Therefore, we define Regret to judge an algorithm as

RT =

T∑
t=1

Xk∗,t −
T∑
t=1

XIt,nIt(t)
.

We say an algorithm is good means that it runs with small regret. Our goal is to
minimize the Expected Regret

E[RT] =

K∑
k=1

E[nk(T)]∆k

where ∆k = µ∗ − µk is the expected loss of arm k.

2. MAIN RESULT
Our result shows that for some UCB strategy, the knowledge about the bound of the
reward distributions is not necessary.

LEMMA 2.1. Suppose X1, . . . , Xn and X are independent and identically distribut-
ed in [a, b]. Let An = min{X1, . . . , Xn} and Bn = max{X1, . . . , Xn}. If for any e ∈ (a, b),

P(X > e) < 1 and P(X < e) < 1, then
lim
n→∞

E[An] = a

lim
n→∞

E[Bn] = b

PROOF. Denote F the cumulative distribution function of X, then the cumulative
distribution function of Bn is

FBn(x) = P(Bn ≤ x)

=

n∏
i=1

P(Xi ≤ x)

= Fn(x).

Hence the expected value of Bn is

E[Bn] =

∫ ∞
−∞

xdFn(x)

= b · Fn(b)− a · Fn(a)−
∫ b

a

Fn(x) dx

The second equation holds because of the representations as Riemann-Stieltjes in-
tegral and integration by parts (see [Wikipedia, 2016]). Note that |F (x)| ≤ 1, F (b) = 1
and 0 ≤ F (a) < 1, we have

lim
n→∞

E[Bn] = b− lim
n→∞

∫ b

a

Fn(x) dx

= b−
∫ b

a

lim
n→∞

Fn(x) dx

= b

according to dominated convergence theorem. Similarly, we get limn→∞ E[An] =
a.

Remark 2.2. The speed that E[An−Bn] converge to a−b depends on the distribution
of X. Let’s consider random variable X with support in [0, 1] with F (x) = xα(α > 0).
Use the equation above, we get E[Bn(x)] = nα/(nα + 1). When α goes to 0, the speed
that this value goes to 1 can be arbitrarily slow.

THEOREM 2.3. If Algorithm 1 is run on K machines having i.i.d reward distribu-
tions X1, . . . , XK with support in [a, b], then its expected regret after T of plays is at
most

[8(b− a)2
∑

i:µi<µ∗

lnT

∆i
] + (18 + C)(

K∑
j=1

∆j) (1)

where C = mint{t ∈ N :
∫ b
a

[F t(x)+(1−F (x))t] dx ≤ (b−a)/4} and F (x) is the cumulative
distribution function of each arm.

PROOF. The proof of this is similar to the proof of Theorem 1 in [Auer et al., 2002].
Notice that

ζ(
9

8
) =

∞∑
n=1

n−9/8 ≈ 8.6 < 9

ALGORITHM 1: UCB1 with reward bound estimation (UCBRBE)
Input: K slot machines with fixed reward distribution
for t = 1, . . . ,K do

play the t-th arm and get reward p
set St = p, nt = 1

end
set a = min{S1, . . . , SK}, b = max{S1, . . . , SK}
for t = K + 1, . . . , T do

set m = arg max1≤j≤K{Sj/nj + (b− a)
√

2 ln t/nj}
play the m-th arm and get reward p
set Sm = Sm + p, nm = nm + 1
if p < a then

set a = p
end
if p > b then

set b = p
end

end

and the lemma above, we conclude this result.

We call Algorithm 1 UCBRBE (Reward Bound Estimation). The only difference be-
tween UCB1 and UCBRBE is that, the former uses the exact difference between up-
per bound b and lower bound a as the coefficient of the bias

√
2 ln t/nj , while the latter

uses estimate bound.

3. EXAMPLES
3.1. Distributions and Regret
For common distributions, the constant C in Equation 1 is not large.

— For uniformly distributed random variable, C = 7.
— For beta distributed random variable with parameter α = β = 0.5, C = 5.
— For binomial distributed random variable with parameter p and n, we have

C < − ln 8

ln max{1− pn, pn}
.

These results show that the regret bound is also O(lnT) and mostly would not be much
larger than having known the reward bound initially.

In our experiment, we try 3 different distributions and compare the regret of UCB1
and UCBRBE, as Figure 1 shows, where Naive is an algorithm that we always play
the arm with the maximum mean reward on the historic data.

3.2. Reward Bound and Regret Bound
To show running UCB1 with haphazardly selected reward bound is not a good choice,
we’ve done some other experiments.

Denote R(α) the regret if we believe α(b− a) is the difference between upper bound
and lower bound, i.e., we use α(b − a)

√
2 ln t/nj as bias in UCB1. What’s more, de-

note R∗ as the regret of using Algorithm 1. The Table I shows that how this different
estimate would influence the regret bound.

In Table I, we know that if α deviate 1 too much (see R(0.1) and R(10)), the regret
can be very large. We also find that our algorithm UCBRBE runs as good as UCB1.

0 20000 40000 60000 80000 100000
Time

0

1000

2000

3000

4000

5000

6000

7000

R
e
g
re

t

Max regret of bernoulli distributions (10 arms)

Naive
UCB1
UCBRBE

0 20000 40000 60000 80000 100000
Time

0

2000

4000

6000

8000

10000

R
e
g
re

t

Max regret of exponential distributions (trunc 10, 3 arms)

Naive
UCB1
UCBRBE

0 20000 40000 60000 80000 100000
Time

0

20000

40000

60000

80000

100000

R
e
g
re

t

Max regret of poisson distributions (trunc 10, 100 arms)

Naive
UCB1
UCBRBE

Fig. 1. The relationship between time and regret in different distributions

Table I. Regret Bound and Reward Bound in UCB1

Distribution K T R(0.1) R∗ R(1) R(10)
Beta 1 4 25000 5318 164 171 3952
Beta 2 5 20000 3822 429 429 1981
Beta 3 6 16666 4056 304 304 3433

Bernoulli 1 4 25000 8375 156 156 4192
Bernoulli 2 8 12500 453 340 340 3445
Bernoulli 3 10 10000 1019 459 459 2672

Note: For 100 times we shuffle each arm’s rewards and run the algo-
rithm to get regret. The regret in this table is the maximal one.

4. APPLICATION
Now, let’s come to the routing problem as follows. We want to send big data, e.g., T
MB, from computer S to computer D. Suppose we have K cloud servers, denoted by
C1, C2, . . . , CK . Our strategy is to choose one as intermediate node, i.e., we send the
data to a server, and then the server send these data to D. As Figure 2 shows, we
choose C2 as intermediate node for example.

Since the path structure and network state between S and Ci and between Ci and D
are very complex, we could not predict which server is our best choice. Therefore, we
describe our problem as online learning problem. We “learn” which server is the best
choice by sending data and get feedback. That’s what Algorithm 2 means.

ALGORITHM 2: Online Routing Algorithm
Input: K cloud servers
while there are data to be sent do

pick k ∈ {1, 2, . . . ,K}
send data to Ck for a while ∆t
get the transmission speed as feedback

end

S

C1

C2

CK

DS

C1

C2

CK

D

Fig. 2. Online Routing Problem

Notice that the online routing problem is exactly the multi-armed problem with un-
known reward bound. In our experiment, we have 3 different servers in Canada and
America. Using Algorithm 1, each second we send data to a server and record the
transmission speed (reward), as Figure 3 shows, where e-Greedy is an algorithm that
with probability e we choose a random arm and with probability 1 − e we choose the
arm with the maximum mean reward on the historic data. (In Figure 3, e = 0.01.)

1200 1300 1400 1500 1600 1700 1800
Time (s)

140000

150000

160000

170000

180000

190000

200000

R
e
w

a
rd

 (
M

B
)

UCBRBE
UCB1
e-Greedy

Fig. 3. The relationship between time and rewards in online routing problem

5. EXTENSION
Though without detailed analysis like UCB1, we believe that all of UCB algorithms
can run with reward bound unknown, using estimate reward bound as the bound in
the bias.

In Table II, we test the same data in TableI with UCB-V (see [Audibert et al., 2007]).
It’s regret bound is

E[RT] ≤ 10
∑

k:µk<µ∗

[
σ2
k

∆k
+ 2(b− a)] lnT.

The main advantage of UCB-V is that the regret bound’s rely on (b−a)2 is decreased
to (b − a). Therefore, R(10) not that large compared with UCB1. We see UCBRBE
based on UCB-V works as well as UCB-V.

ACKNOWLEDGMENTS

The authors would like to thank Dr. C. Wu for providing guidance and advice.

Table II. Regret Bound and Reward Bound in UCB-V

Distribution K T R(0.1) R∗ R(1) R(10)
Beta 1 4 25000 1985 61 61 220
Beta 2 5 20000 1785 165 165 398
Beta 3 6 16666 3170 85 85 361

Bernoulli 1 4 25000 9619 66 73 243
Bernoulli 2 8 12500 498 143 143 509
Bernoulli 3 10 10000 710 193 193 648

Note: The rewards in this table are the same with Table I while the
algorithm is different.

REFERENCES
Audibert, J.-Y., Munos, R., and Szepesvári, C. (2007). Variance estimates and exploration function in multi-

armed bandit. In CERTIS Research Report 07–31. Citeseer.
Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem.

Machine learning, 47(2-3):235–256.
Wikipedia (2016). Riemannstieltjes integral — wikipedia, the free encyclopedia. [Online; accessed 26-

August-2016].

