
168

Relational Algorithms for Top-kQuery Evaluation

QICHEN WANG∗†, Hong Kong Baptist University, Hong Kong SAR, China

QIYAO LUO∗, Hong Kong University of Science and Technology, Hong Kong SAR, China

YILEI WANG∗, Alibaba Cloud, Hangzhou, China

The evaluation of top-k conjunctive queries, a staple in business analysis, often requires evaluating the

conjunctive query prior to filtering the top-k results, leading to a significant computational overhead within

Database Management Systems (DBMSs). While efficient algorithms have been proposed, their integration

into DBMSs remains arduous. We introduce relational algorithms, a paradigm where each algorithmic step is

expressed by a relational operator. This allows the algorithm to be represented as a set of SQL queries, enabling

easy deployment across different systems that support SQL. We introduce two novel relational algorithms,

level-k and product-k, specifically designed for evaluating top-k conjunctive queries and demonstrate that

level-k achieves optimal running time for top-k free-connex queries. Furthermore, these algorithms enable

easy translation into an oblivious algorithm for secure query evaluations. The presented algorithms are

not only theoretically optimal but also exhibit eminent efficiency in practice. The experiment results show

significant improvements, with our rewritten SQL outperforming the baseline by up to 6 orders of magnitude.

Moreover, our secure implementations not only achieve substantial speedup compared to the baseline with

secure guarantees but even surpass those baselines that have no secure guarantees.

CCS Concepts: • Information systems → Query optimization; Join algorithms; Query operators; •
Security and privacy→ Management and querying of encrypted data.

Additional Key Words and Phrases: conjunctive query, top-k query, secure multi-party computation, relational

algorithm

ACM Reference Format:
Qichen Wang, Qiyao Luo, and Yilei Wang. 2024. Relational Algorithms for Top-k Query Evaluation. Proc. ACM
Manag. Data 2, N3 (SIGMOD), Article 168 (June 2024), 27 pages. https://doi.org/10.1145/3654971

1 INTRODUCTION
In real-world scenarios, exhaustive query results can often prove superfluous, with users generally

seeking only the “best” or “most interesting” results. For instance, in Wikidata’s SPARQL query

service [60], more than 45.3% of queries contain a "LIMIT" clause to return only a small part of the

full results [15]. The following also gives an example of a top-k conjunctive query
1
.

Example 1.1. Consider a scenario where the government aims to organize drug trials, which

involves a trilateral collaboration among hospitals, medical labs, and drug companies. Only hospitals

and medical labs situated in the same city are eligible to collaborate. The government has evaluated

∗
All authors contributed equally to the paper.

†
Qichen Wang is the corresponding author.

1
We often use the term “top-k query” as a shorthand representation for “top-k conjunctive query” in the rest of the paper.

Authors’ addresses: Qichen Wang, qcwang@comp.hkbu.edu.hk, Hong Kong Baptist University, Hong Kong SAR, China;

Qiyao Luo, qluoak@cse.ust.hk, Hong Kong University of Science and Technology, Hong Kong SAR, China; Yilei Wang,

fengmi.wyl@alibaba-inc.com, Alibaba Cloud, Hangzhou, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

2836-6573/2024/6-ART168

https://doi.org/10.1145/3654971

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-0959-5536
HTTPS://ORCID.ORG/0000-0003-4167-8670
HTTPS://ORCID.ORG/0000-0002-7856-2527
https://doi.org/10.1145/3654971
https://orcid.org/0000-0002-0959-5536
https://orcid.org/0000-0003-4167-8670
https://orcid.org/0000-0002-7856-2527
https://doi.org/10.1145/3654971

168:2 Qichen Wang, Qiyao Luo, and Yilei Wang

𝐻

ℎ𝑖𝑑 𝑐𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒𝐻
ℎ1 NY 1

ℎ2 NY 2

ℎ3 NY 10

ℎ4 LA 3

ℎ5 LA 5

ℎ6 LA 9

ℎ7 SF 1

ℎ8 SF 2

𝐿

𝑙𝑖𝑑 𝑐𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒𝐿
𝑙1 NY 2

𝑙2 NY 6

𝑙3 NY 5

𝑙4 NY 7

𝑙5 LA 10

𝑙6 SF 3

𝑙7 SF 5

𝐷

ℎ𝑖𝑑 𝑑𝑖𝑑 𝑠𝑐𝑜𝑟𝑒𝐷
ℎ1 𝑑1 1

ℎ1 𝑑2 2

ℎ2 𝑑1 7

ℎ3 𝑑3 3

ℎ5 𝑑5 1

ℎ7 𝑑4 10

ℎ7 𝑑6 9

ℎ8 𝑑1 10

Join and sort−−−−−−−−−→

𝐻 Z 𝐿 Z 𝐷

ℎ𝑖𝑑 𝑙𝑖𝑑 𝑑𝑖𝑑 𝑠𝑐𝑜𝑟𝑒

ℎ3 𝑙4 𝑑3 20

ℎ3 𝑙2 𝑑3 19

ℎ3 𝑙3 𝑑3 18

ℎ8 𝑙7 𝑑1 17

ℎ5 𝑙5 𝑑5 16

ℎ7 𝑙7 𝑑4 16

ℎ2 𝑙4 𝑑1 16

· · ·

𝐿(𝑙𝑖𝑑, 𝑐𝑖𝑡𝑦, 𝑠𝑐𝑜𝑟𝑒𝐿)

𝐻 (ℎ𝑖𝑑, 𝑐𝑖𝑡𝑦, 𝑠𝑐𝑜𝑟𝑒𝐻)

𝐷 (ℎ𝑖𝑑, 𝑑𝑖𝑑, 𝑠𝑐𝑜𝑟𝑒𝐷)

(a) Running example (b) Join tree

Fig. 1. A running example and the join tree of Example 1.1

and assigned scores to potential hospitals and medical labs to facilitate the selection process. These

scores are cataloged in two relations: H(id, city, score) for hospitals and L(id, city, score) for labs.

Additionally, each hospital has independently assessed and scored potential drug companies for

collaboration, which is captured in relation D(hid, did, score).

Figure 1 gives a running instance of the database, and the following SQL query retrieves the

combinations with the top 5 highest total scores for collaboration:

SELECT H.id, L.id, D.did

FROM H, L, D

WHERE H.city = L.city and H.hid = D.hid

ORDER BY H.score+L.score+D.score DESC

LIMIT 5;

The standard method for evaluating a top-k query involves evaluating the conjunctive query first,

then sorting the results by annotation and outputting the top-k results. This approach is used by

most of the commercial DBMSs
2
and has a cost of𝑂 (𝑁 + |J | log |J |), where 𝑁 represents the input

size of the database and |J | represents the output size of the conjunctive query and is typically

much larger than 𝑘 . The complexity can be further reduced by pushing down the order-by operator

to the base table or intermediate results. However, such approaches may not always be feasible,

and the worst-case complexity remains unchanged. In recent years, novel methods [15, 24, 58]

have been proposed to approach the optimal complexity of this problem. However, the practical

implementation of these methods in database systems remains challenging due to the customized

operations and data structures they need.

On the other hand, with the rapid growth of data volumes, it becomes harder for users to manage

and process all this information. Cloud services have stepped up as an effective solution, offering a

cost-friendly and reliable method for data storage, computation, and transmission. This paradigm

shift towards cloud computing has given rise to the trend of data outsourcing. However, there
are hurdles to overcome, especially around privacy. Businesses, like hospitals in Example 1.1 that

handle sensitive information, are concerned about information leakage.

A solution to this problem is to have cloud services keep only encrypted user data, leading to the

creation of encrypted databases [11, 37, 47, 56, 66]. The method of secure multi-party computation
(MPC) instantiates this concept. Leveraging multiple non-colluding servers, MPC breaks down and

encrypts data into different parts called shares. Through a collaborative execution of a predetermined

protocol, the servers perform computations on the shares. This process ensures the theoretical

protection of data during processing and assures the authenticity of the outcomes.

Yet, transitioning from an algorithm that computes over plaintext to one that fits within the MPC

model is not straightforward. While there are general solutions for securely performing operations

(such as addition and multiplication [14, 30, 52, 68]) on shares, the way data is accessed and changed

2
See the source code from DuckDB [1] and PostgreSQL [2].

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:3

in memory, known as the access pattern, must also be protected too [26]. This requires algorithms

to be oblivious, i.e., the access pattern should be independent of the input. Techniques like ORAM

can make non-oblivious algorithms oblivious but often come with considerable overhead. The

resultant systems are sometimes more than 1000 times slower than plaintext processing [49], due to

both the overheads of computing over shares and making algorithms oblivious, which is a massive

impediment that hinders practical application.

To understand why this huge gap exists, consider making the (natural) join operator oblivious.

When joining two tables of size 𝑁 , the complexity inevitably escalates to 𝑂 (𝑁 2). Anything less

would rule out the worst-case input, making the algorithm non-oblivious. Consequently, the naive

algorithm that joins 𝑐 tables one by one would result in a running time of 𝑂 (𝑁 𝑐). In contrast,

an algorithm for plaintext can have the advantage that the join conditions typically filter out

many intermediate results. Some recent studies [9, 12, 36] have proposed a relaxation of security

prerequisites, assuming that revealing the final result sizes might not compromise safety. While the

validity of this proposition awaits confirmation, preliminary findings suggest that even with such

relaxed constraints, the query time remains far from ideal. For example, the state-of-the-art secure

query engine [36] takes 2000x more time than PostgreSQL on TPC-H Query 4 with 2
16
tuples.

Top-k queries may pave the way for overcoming these hurdles. First, since 𝑘 is typically far

smaller than the worst-case output size 𝑂 (𝑛𝑐), the theoretical minimum computation cost is

reduced significantly from 𝑂 (𝑛𝑐) to �̃� (𝑛 + 𝑘)3. Additionally, 𝑘 is a public parameter and can be

disclosed during the execution, avoiding costly dummy tuple padding while still preserving private

information.

1.1 Our Contribution
In this paper, we study top-k queries, especially focusing on designing relational algorithms

with optimal guarantees. Intuitively, a relational algorithm is one in which all operations in the

algorithm can be expressed by relational algebra and its extensions. Section 3 summarizes the

relational operators used in the paper.

Our primary contribution is the introduction of level-k (Section 4.1), a relational algorithm that

evaluates top-k binary join queries in time 𝑂 (𝑁 + 𝑘 log𝑘). The achieved complexity is optimal,

demanding at least𝑂 (𝑁) time for input reading and𝑂 (𝑘 log𝑘) for output sorting4. We observe that

level-k evaluates a top-k query in log𝑘 rounds, which might introduce an additional constant cost

in practice. To address this limitation, we also present product-k (Section 4.1) — a variant of level-k
that operates in𝑂 (1) round. Although its worst-case running time is𝑂 (𝑁 +𝑘2) (assuming |J | ≥ 𝑘2),

its implementation is more straightforward, and its practical performance could potentially surpass

that of level-k due to a smaller hidden constant.

Our methodologies are not confined to binary join queries. We successfully adapt level-k and

product-k to support full acyclic conjunctive queries and free-connex queries (Section 4.2). For

these queries, we achieve a near-linear running time for these queries concerning the input size

𝑁 and the final count 𝑘 . Our approach incorporates a sequence of reductions, with each step

diminishing the query size by 1. Once the query is reduced to a single table, it exactly stores the

top-k query results. We prove that for any top-k free-connex queries, our method can solve them

in optimal time 𝑂 (𝑁 + 𝑘 log𝑘). Based on this, we further achieve 𝑂 (𝑁𝑤 + 𝑘 log𝑘) running time

for general conjunctive queries that are not free-connex (Section 4.3) by equipping level-k with

Generalized Hypertree Decomposition (GHD) and Worst-Case Optimal Joins (WCOJ). The result

further improves the complexity of the previous state-of-the-arts by a factor of log𝑁 (Section 4.4).

3�̃� notation suppresses log factors.

4
Comparison sorts on average cannot surpass𝑂 (𝑘 log𝑘) [21].

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:4 Qichen Wang, Qiyao Luo, and Yilei Wang

Furthermore, we demonstrate that (1) relational algorithms can be represented by a set of SQL

statements, which allows us to deploy our novel algorithm on any database or data processing

platform that supports SQLwithout modifying the kernel while ensuring optimal guarantees, and (2)

relational algorithms can be easily turned into oblivious algorithms due to the natural of relational

operators, making level-k and product-k to be oblivious (Section 5). We implement it within the

three-server model, leading to time and communication complexities of 𝑂 (𝑁 log𝑁 + 𝑘 log𝑘). To
the best of our knowledge, this is the pioneering algorithm for top-k queries under the MPC model.

In addition to the theoretical significance, our algorithms prove potent in practical settings. To

illustrate this, we engage in experimental evaluations in Section 6 on both plaintext and MPC:

• We express both level-k and product-k by a set of SQL statements, where level-k can

be expressed by 𝑂 (log𝑘) SQL statements and product-k can be expressed by 𝑂 (1) SQL
statements. Evaluations of the original and transformed queries on commercial DBMSs

like PostgreSQL and DuckDB reveal that our algorithms offer 3 to 6 orders of magnitude

improvement to the current database engines, even without considering those data points

that the original queries cannot finish in 8 hours.

• By implementing level-k and product-k on the well-known ABY3 framework, we are able

to support top-k queries in secure multi-party settings. The experiment results indicate a

huge improvement, surpassing even the performance of native database engines operating on

plaintext. These findings not only attest to our algorithm’s practical utility but also suggest

its potential to expand the range of applications in privacy-preserving query evaluations.

1.2 Related Work
Optimizing conjunctive query evaluation is a pivotal challenge in database research due to its

potential to generate huge intermediate or final results, which is critical for performance. Signifi-

cant efforts have been made to discover instance or worst-case optimal algorithms, not only for

conjunctive queries [8, 55, 67] but also their integration with other operators, such as aggregations

[7, 42], unions [17], comparisons [43, 44, 62], set differences [38], and updates [39, 61].

Top-k queries are another important class of queries. In fact, they consist of two operators,

"ORDER BY" and "LIMIT", where the "ORDER BY" operator sorts the query results, while the

"LIMIT" operator constrains the size of the output results. [41, 59] provide good surveys of the

problem. Threshold Algorithm (TA) [28], J* [54], Rank-Join [40], LARAJ* [50], and a-FRPA [29] uses

heuristic and cost models to reduce search space. However, none of these approaches can provide

an optimality guarantee. [15] studies threshold queries, which limits the final output size without

ranked requirement. [58] and [23, 24] simultaneously studied the problem of rank enumeration

over conjunctive queries, which can be regarded as a generalized problem of top-k queries. They

imply �̃� (𝑁 + 𝑘) algorithms for top-k queries. When 𝑘 is known in advance, we can achieve better

complexity than using rank enumeration for solving top-k queries. A detailed analysis is given

in Section 4.4. Based on Rank-Join [40], Li et al. [46] extended relational algebra and added new

physical operators to implement top-k operators inside databases. They also proposed optimization

techniques to push down sorting and limit operators on query plans. Still, those techniques rely

on the special structure of the ranking function and cannot provide optimality guarantees. We

adopt a similar setting as [46], while we (1) avoid introducing new operators inside databases but

implement our techniques by query rewrite, which renders our approach easily implemented in

different databases, and (2) our rewrite plan can be proved optimal. Nevertheless, all these previous

works are not oblivious and cannot be made oblivious easily, while our approach is oblivious.

Another line of studies [19] tries to optimize top-k queries on the external memory model, where

the entire database or even 𝑘 tuples cannot be fitted into the memory. The setting departs from the

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:5

setting in this paper, where we focus on the RAM model such that the database can fit into the

memory.

The aforementioned methods operate on plaintext without providing any security or privacy

guarantee. Secure computation refers to a set of techniques employed to perform computations

on data while ensuring the confidentiality of the data. At the heart of secure computation lies the

concept of oblivious algorithms, which exhibit workflow and access patterns during processing that

are independent of the input data. Krastnikov et al. [45] propose a general oblivious algorithm for

binary (equi-)joins. This algorithm achieves a near-optimal complexity of 𝑂 (𝑁 log
2 𝑁 +𝑀 log𝑀),

where 𝑁 and𝑀 denote the input and output sizes, respectively. Secure multi-party computation

(MPC), which enables multiple parties to jointly compute a function without disclosing any partici-

pant’s private input except the function output, was initially introduced in Yao’s pioneering paper

[68]. SMCQL [11] is the first query processing engine in the two-party semi-honest MPC model.

Since then, several research efforts [47, 53, 56] have been dedicated to enhancing the performance

of MPC protocols. The most advanced algorithms for query processing currently available are

two concurrent works [9, 36], which offer solutions with complexities of 𝑂 (𝑁 log
2 𝑁 + 𝑀) and

𝑂 (𝑁 log𝑁 +𝑀 log𝑀), respectively. The secure top-k queries [51, 70] have been explored using

homomorphic encryption techniques. While homomorphic encryption is theoretically intriguing,

it is computationally expensive and often impractical for real-world applications [49]. Another

closely related topic is the secure k-nearest neighbor (kNN) search [18, 65, 69], which can be viewed

as an application of top-k queries from a single table.

1.3 Outlines
Section 2 formally defines the top-k conjunctive queries and provides a lower bound for the problem.

In Section 3, we introduce relational algorithms and all relational operators that form the basic

building block of our work. Section 4.1 presents our algorithms, product-k and level-k. They
are further extended to support free-connex queries (Section 4.2) and general conjunctive queries

(Section 4.3). Section 5 studies how to apply our algorithm under the MPC model. In Section 6,

we present our system design and the experimental evaluation. At last, we conclude the paper in

Section 7.

2 PRELIMINARY
2.1 Top-k ConjunctiveQueries

Conjunctive Queries. In this work, we focus on conjunctive queries (CQs) of the following form:

Q = 𝜋𝑶 (𝑅1 (𝑬1) Z 𝑅2 (𝑬2) Z · · · Z 𝑅𝑐 (𝑬𝑐)) ,

where 𝑹 = {𝑅1, · · · , 𝑅𝑐 } is the set of all relations, and each 𝑅𝑖 (𝑬𝑖) is a relation with a set of attributes

𝑬𝑖 , for 𝑖 = 1, 2 . . . , 𝑐 . For simplicity, suppose a relation 𝑅𝑖 appears twice in the query (with different

attribute renamings), then we consider them as two identical copies of 𝑅𝑖 . 𝑬 = 𝑬1 ∪ 𝑬2 ∪ · · · ∪ 𝑬𝑐 is
the set of all attributes in the query, and 𝑶 ⊆ 𝑬 is the set of output attributes. Let J = 𝑅1 (𝑬1) Z
𝑅2 (𝑬2) Z · · · Z 𝑅𝑐 (𝑬𝑐). If 𝑶 = 𝑬 , such a query (Q = J) is known as a full join query; otherwise
(Q = 𝜋𝑶J), it is said to be a join-project query.

We adopt the standard RAM model of computation and measure the running time in terms

of data complexity, i.e., the query size |𝑄 | is considered a constant. The asymptotically optimal

running time for evaluating any query is �̃� (𝑁 + 𝑀), where 𝑁 =
∑𝑛

𝑖=1 |𝑅𝑖 | is the input size and
𝑀 = |Q| is the output size. Note that for the top-𝑘 query, the output size𝑀 = 𝑘 .

Annotated Relations. We follow the same terminology of annotated relations from recent works

[7, 42]. Let (S, ⊕, ⊗) be a communicative semiring, where S is the ground set and ⊕ and ⊗ are its

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:6 Qichen Wang, Qiyao Luo, and Yilei Wang

“addition” and “multiplication” operators. Given such a semiring, for any tuple 𝑡 ∈ 𝑅𝑖 , we assign it

with an annotation 𝑣𝑖 (𝑡) ∈ S.
For a full join query J , the annotation for any 𝑡 ∈ J is

𝑣 (𝑡) =
⊗

𝑅𝑖 (𝑬𝑖) ∈Q
𝑣𝑖 (𝜋𝑬𝑖 𝑡).

For a join-project query Q = 𝜋𝑶J over the full join query J , assume each tuple 𝑡 ′ ∈ J has its

annotation 𝑣 ′ (𝑡 ′), the annotation for any 𝑡 ∈ Q is

𝑣 (𝑡) =
⊕

∀𝑡 ′∈J,𝜋𝑶𝑡 ′=𝑡
𝑣 ′ (𝑡 ′).

In addition, we require the semiring to be a selective dioid [31, 58]. Selective dioids are semirings

with an ordering property, where the ⊕ satisfies either 𝑥 ⊕ 𝑦 = 𝑥 or 𝑥 ⊕ 𝑦 = 𝑦. For example, the

well-known tropical semiring (N,max, +) is a selective dioid as 𝑥 max 𝑦 always returns 𝑥 or 𝑦. From

a selective dioid, we can further define an order ⪯ such that if 𝑥 ⊕ 𝑦 = 𝑦, then 𝑥 ⪯ 𝑦. The order ⪯
satisfies

(1) If 𝑥 ⪯ 𝑦, then 𝑥 ⊕ 𝑧 ⪯ 𝑦 ⊕ 𝑧;
(2) If 𝑥 ⪯ 𝑦 and 0 ⪯ 𝑧, then 𝑥 ⊗ 𝑧 ⪯ 𝑦 ⊗ 𝑧 and 𝑧 ⊗ 𝑥 ⪯ 𝑧 ⊗ 𝑦, where 0 is the ⊕-identity element.

We also define 𝑥 ⪰ 𝑦 if 𝑦 ⪯ 𝑥 ; define 𝑥 ≻ 𝑦 if 𝑦 ⪯ 𝑥 and 𝑦 ≠ 𝑥 .

Top-𝑘 Conjunctive Queries. Top-𝑘 query processing is an important building block in database

systems as it can reduce query cost when only the “best” or “most interesting” results are needed

instead of the full output. Given a conjunctive queryQ over annotated relations with a selective dioid

(S, ⊕, ⊗), the annotation of each output tuple, commonly a real or an integer, is the annotation 𝑣 (𝑡).
The top-𝑘 conjunctive query returns the 𝑘 tuples with top-𝑘 annotations. We assume all annotation

𝑣 (𝑡) are distinct; otherwise, the tie can be broken by enforcing an additional lexicographic order on

the output attributes [58].

We define its output T = 𝜆𝑘𝜏⪯ (𝑡1, 𝑡2, · · · , 𝑡𝑘) ⊆ Q, such that:

(1) ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑘, 𝑣 (𝑡 𝑗) ⪯ 𝑣 (𝑡𝑖);
(2) ∀𝑡 ∈ (Q − T), 𝑣 (𝑡) ⪯ 𝑣 (𝑡𝑘).

Here, 𝜆𝑘 (Q) limits the output to the first 𝑘 outputs of Q, 𝜏⪯ (Q) sorts Q on 𝑣 with the order ⪯. In
the standard SQL statement, the top-k query corresponds to the "ORDER BY LIMIT" clause, as

SELECT 𝑶, ⊕(𝑣1 (𝑥1) ⊗ · · · ⊗ 𝑣𝑛 (𝑥𝑛))
FROM 𝑅1 (𝑥1) NATURAL JOIN · · · NATURAL JOIN 𝑅𝑛 (𝑥𝑛)
GROUP BY 𝑶

ORDER BY ⊕(𝑣1 (𝑥1) ⊗ · · · ⊗ 𝑣𝑛 (𝑥𝑛)) DESC LIMIT 𝑘;

Note that this clause also requires the output to be sorted by the annotations with order ⪯. In our

definition, we do not specify any requirement for the output order. We could sort the output if it

needs to be ordered, which incurs cost 𝑂 (𝑘 log𝑘).

2.2 Classification of CQs
To help present our results, we introduce some commonly used terminologies and important classes

of CQs.

Acyclic CQ [13, 27] There are many equivalent definitions for acyclicity, and we adopt the one

based on join tree. A CQ Q is acyclic if there exists a tree T satisfying the following properties: (1)

the set of nodes in T is a one-to-one mapping to the set of relations in Q; (2) for each attribute 𝐸,

all nodes of T containing 𝐸 form a connected subtree of T .

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:7

Free-connex CQ [10] A CQ Q is free-connex if a join tree T exists whereby a subtree T𝑐 that
contains the root node has 𝑬𝑐 as the set of all attributes presented in T𝑐 , with (1) 𝑶 ⊆ 𝑬𝑐 , and (2)

for any non-root node relation 𝑅(𝑬) on T𝑐 , having 𝑅𝑝 (𝑬𝑝) as its parent node, 𝑬 ∩ 𝑬𝑝 ⊆ 𝑶 . Such T
is recognized as a free-connex join tree of Q.
Both acyclic and free-connex characteristics bear significance when analyzing the hardness of

a CQ. In fact, acyclic CQ represents the complete class of CQ that can be evaluated optimally in

𝑂 (𝑁 +𝑀) time if the CQ is full [10, 67]. At the same time, free-connex is the complete class of

CQ evaluated in 𝑂 (𝑁 +𝑀) time, given that the query is non-full [10]. The hardness results are

obtained by well-known conjectures, including Boolean Matrix Multiplication conjecture
5
and

HyperClique conjecture
6
. These can be further extended to top-k queries, for example:

Theorem 2.1. There is no algorithm that can evaluate the top-k query over CQ 𝜋𝐴,𝐶𝑅(𝐴, 𝐵) Z
𝑆 (𝐵,𝐶) in �̃� (𝑁 + 𝑘) time unless BMM conjecture fails.

Proof. Given two 𝑛 × 𝑛 Boolean matrices𝑀1,𝑀2, we can encode them with relations 𝑅 and 𝑆 ,

and assign all tuples with weight 𝑣 (𝑡) = 1. If such an algorithm exists, then we can set 𝑘 = 𝑛2 and

evaluate the query. Since the input size 𝑁 ≤ 𝑛2, the query can be evaluated with the algorithm in

�̃� (𝑛2) time. The output corresponds to𝑀1 ×𝑀2, contravening the BMM conjecture. □

Generalized Hypertree Decomposition (GHD) [8, 34] is a powerful tool for query processing. It
efficiently transforms cyclic CQs into acyclic forms, allowing for effective evaluation of non-acyclic

queries. The GHD method involves grouping relations into “bags” and organizing these bags into

a join tree, denoted as 𝑇 . This process unfolds in two distinct phases. Initially, for each bag Bag,
we compute the full join query 𝑄Bag :=Z𝑅∈Bag 𝑅 by using WCOJ [55]. The results from the query

create a special relation, 𝑅Bag, with a worst-case size of 𝑁𝑤
. Here, the treewidth 𝑤 is a crucial

parameter in tree decomposition, representing the worst-case output size of 𝑄Bag for each bag.

Notably, a single relation on 𝑇 has a weight of 1, suggesting that the treewidth for any acyclic CQ

is also 1. After computing all 𝑄Bag, we replace all bags on 𝑇 with 𝑅Bag, forming a new tree 𝑇 ′ that

represents an acyclic CQ, �̂� . The treewidth of 𝑇 is the maximum treewidth among all bags, i.e., the

maximum input size for all relations on 𝑇 ′. The second phase is evaluating this acyclic CQ. Using

the Yannakakis algorithm [67], we can perform this evaluation in𝑂 (𝑁 ′ +𝑀) time, where 𝑁 ′ = 𝑁𝑤

represents the current input size on 𝑇 ′. Among different GHDs, those with lower treewidth have

better worst-case running times.

Finding the optimal GHD with the smallest treewidth is a complex task; even determining

whether a GHD exists with treewidth below a certain constant is NP-complete [33]. Moreover, the

treewidth can be further optimized by employing multiple GHDs [8]. In this study, we assume

the optimal GHD or GHDs are provided beforehand, as we consider constant query size, and our

objective is to evaluate top-k queries efficiently using the given GHD or GHDs.

5
The Boolean Matrix Multiplication (BMM) conjecture [57] states: Given two Boolean matrices of size 𝑛 × 𝑛, no algorithm

can compute their multiplication in �̃� (𝑛2) time.

6
The HyperClique (HC) conjecture [48] states: given a 𝑘-uniform hypergraph (for 𝑘 ≥ 3), no algorithm can determine

whether a hyperclique of size 𝑘 + 1 exists or not in𝑂 (𝑚) time.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:8 Qichen Wang, Qiyao Luo, and Yilei Wang

A

B

C D

E

F

R1

R3

R2

R4

R5

R6
R7

Bag1

Bag2

Bag3

(a) Generalized Hypertree Decomposition

A
B

C D

E

F

R3

R2

RBag1

RBag2

RBag3

(b) Acyclic CQ

Fig. 2. An Example of GHD and its acyclic CQ

Operator SQL Query Plaintext Complexity Secure Complexity

Selection(𝜎𝑓 (𝑅)) SELECT * FROM R WHERE f; 𝑂 (|𝑅 |) 𝑂 (|𝑅 |)
Projection(𝜋𝑬 (𝑅)) SELECT 𝑬 FROM R; 𝑂 (|𝑅 |) 𝑂 (|𝑅 |)
Group-By(𝜉𝑬 (𝑅)) SELECT 𝑬 FROM R GROUP BY 𝑬; 𝑂 (|𝑅 |) 𝑂 (|𝑅 |)
Order-By(𝜏⪯ (𝑅)) SELECT * FROM R ORDER BY 𝑣 DESC; 𝑂 (|𝑅 | log(|𝑅 |)) 𝑂 (|𝑅 | log(|𝑅 |))

Limit(𝜆𝑘) SELECT * FROM R LIMIT k; 𝑂 (𝑘) 𝑂 (𝑘)

Join(𝑅1 Z 𝑅2)
SELECT *, 𝑅1 .𝑣 ⊗ 𝑅2 .𝑣 AS 𝑣

FROM 𝑅1 NATURAL JOIN 𝑅2;
𝑂 (|𝑅1 | + |𝑅2 | + |𝑅1 Z 𝑅2 |) 𝑂 (|𝑅1 | · |𝑅2 |)

Union(𝑅1 ∪ 𝑅2) SELECT * FROM 𝑅1 UNION 𝑅2 𝑂 (|𝑅1 | + |𝑅2 |) 𝑂 (|𝑅1 | + |𝑅2 |)

SemiJoin(𝑅1 ⋉ 𝑅2)
SELECT * FROM 𝑅1

WHERE EXISTS (SELECT 1

FROM 𝑅2 WHERE 𝑅2 .𝑘𝑒𝑦 = 𝑅1 .𝑘𝑒𝑦);

𝑂 (|𝑅1 | + |𝑅2 |) 𝑂 (|𝑅1 | log(|𝑅1 |) + |𝑅2 | log(|𝑅2 |))

Group-By

Aggregation(𝜋⊕𝑬 (𝑅))
SELECT 𝑬, ⊕(𝑣) AS 𝑣

FROM 𝑅 GROUP BY 𝑬;
𝑂 (|𝑅 |) 𝑂 (|𝑅 | log(|𝑅 |))

Top-k(𝜆⪯
𝑘
(𝑅)) SELECT * FROM R

ORDER BY 𝑣 DESC LIMIT k;
𝑂 (|𝑅 |) 𝑂 (|𝑅 |)

Row-Number

(𝜌⪯𝑬 (𝑅))
SELECT *, row_number() OVER

(PARTITION BY 𝑬

ORDER BY 𝑣 DESC) AS id FROM 𝑅;

𝑂 (|𝑅 | log(|𝑅 |)) 𝑂 (|𝑅 | log(|𝑅 |))

Table 1. Summary of relation operators, where 𝑣 represents the annotation

Example 2.2. See Figure 2(a) as an example of GHD on a natural join of 7 relations: 𝑅1 (𝐴, 𝐵),
𝑅2 (𝐵,𝐶), 𝑅3 (𝐶,𝐴), 𝑅4 (𝐶, 𝐷), 𝑅5 (𝐷, 𝐸), 𝑅6 (𝐸, 𝐹) and 𝑅7 (𝐹, 𝐷). There are three bags in the decompo-

sition:

𝑅𝐵𝑎𝑔1 ← 𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶,𝐴);
𝑅𝐵𝑎𝑔2 ← 𝑅4 (𝐶, 𝐷);
𝑅𝐵𝑎𝑔3 ← 𝑅5 (𝐷, 𝐸) Z 𝑅6 (𝐸, 𝐹) Z 𝑅7 (𝐹, 𝐷).

After performing two triangle joins (𝑅𝐵𝑎𝑔1 and𝑅𝐵𝑎𝑔3) we get an acyclic join (line-3 join) as Figure 2(b),

with treewidth 1.5. The tree can be evaluated in a total time of 𝑂 (𝑁 1.5 +𝑀).

3 RELATIONAL ALGORITHMS
In recent years, substantial efforts have been dedicated to enhancing efficiencies in query processing.

Notwithstanding, a significant portion of these works verify their efficiency by implementing new

methods in standalone research systems or specific products, thus impeding their implementation

and validation within authentic environments. Recently, some attempts [32, 38, 63] based on query

rewriting have emerged. Rewriting the original SQL into optimized SQL that follows their proposed

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:9

algorithms facilitates the straightforward deployment of advanced algorithms with complexity

guarantee, across different databases or data processing systems that support SQL.

However, not all algorithms can be directly translated by SQL statements. To further this concept,

we introduce relational algorithms, representing a category of algorithms that can be fully

articulated through relational algebra [6] and its extension [46]. These operators can all be directly

expressed as SQL expressions and, when executed within a database, come with running time guar-

antees. Table 1 summarizes the relational operators used in our study, as well as some expansions

that have been studied before but are yet to be discussed as relational operators, including:

Top-k(𝜆⪯
𝑘
(𝑅)): given a table (or query result)𝑅, it returns the𝑘 tuples of𝑅 with largest annotations.

It simplifies 𝜆𝑘𝜏⪯ (𝑅) without requiring the final output to be sorted. The standard approach for

the top-k operator in databases would require first sorting the table 𝑅, then outputting the first 𝑘

results, making the running time 𝑂 (|𝑅 | log |𝑅 | + 𝑘). However, it can be further improved to 𝑂 (|𝑅 |)
under the RAM model by using the well-known quick select algorithm [20] to find the 𝑘-th largest

annotation 𝑣𝑘 . The quick select algorithm is very similar to the quick sort algorithm. Each step

takes a pivot and partitions the input array into two parts according to the pivot. The difference is

that finding 𝑣𝑘 requires the recursion to only go into one part, making the total cost of the quick

select algorithm 𝑂 (|𝑅 |). After finding 𝑣𝑘 , one can simply scan all tuples in 𝑅 and keep only the

tuples with annotations larger or equal to 𝑣𝑘 as a result. Therefore, the total cost is 𝑂 (|𝑅 |).

Row-number(𝜌⪯𝑬 (𝑅)): Given a table (or query result) 𝑅, it assigns a unique, sequential integer

into column id to each row. The rows are partitioned by 𝑬 and ordered according to annotation

𝑣 . The integer is assigned incrementally from 1 within each group. When 𝑬 = ∅, the entire 𝑅 is

considered a single group, and id is allocated in accordance with the overall ordering determined

by annotation 𝑣 . The row-number operator is not derived from relational algebra but originates

from the SQL ANSI 2003 standard [25].

In addition, we can derive the following principle:

Theorem 3.1. (quasi-commutative principle). For any relation 𝑅(𝐹) and 𝐸 ⊂ 𝐹 , if the annotations
of 𝑅(𝐹) are all distinct, then

𝜋⊕
𝐸

(
𝜆⪯
𝑘
(𝑅)

)
⊆ 𝜆⪯

𝑘

(
𝜋⊕
𝐸
(𝑅)

)
.

Proof. Let 𝑅𝐸 = 𝜋⊕
𝐸
(𝑅). For any 𝑡 ∈ 𝑅𝐸 , if 𝑡 ∉ 𝜆⪯

𝑘
(𝑅𝐸), then there exists 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅𝐸 such

that 𝑣 (𝑡) ≺ 𝑣 (𝑡𝑖) for all 𝑖 ∈ [𝑘]. Since the annotations of 𝑅𝐸 are obtained by computing the

maximum annotations for each group of tuples in 𝑅, there exists 𝑡 ′
1
, . . . , 𝑡 ′

𝑘
∈ 𝑅 such that 𝑡 ′𝑖 .𝐸 = 𝑡𝑖

and 𝑣 (𝑡 ′𝑖) = 𝑣 (𝑡𝑖). Therefore, for any 𝑡 ′ ∈ 𝑅 with 𝑡 ′ .𝐸 = 𝑡 , 𝑣 (𝑡 ′) ⪯ 𝑣 (𝑡) ≺ 𝑣 (𝑡𝑖) = 𝑣 (𝑡 ′𝑖) for all
𝑖 ∈ [𝑘]. This means that any 𝑡 ′ with 𝑡 ′ .𝐸 = 𝑡 must not appear in 𝜆⪯

𝑘
(𝑅), hence 𝑡 ∉ 𝜋⊕

𝐸
(𝜆⪯

𝑘
(𝑅)),

which concludes the theorem. □

As a consequence, any relational algorithm can be converted into SQL and submitted directly

for execution within a database, without the necessity to modify the database kernel or create

standalone research systems.

4 THE TOP-K ALGORITHM
4.1 Top-k Binary Join
We start with the top-k binary join, the simplest non-trivial top-k problem. Let 𝑅 and 𝑆 be two

relations and |𝑅 | = |𝑆 | = 𝑂 (𝑁). Our target is to compute𝑇 = 𝜆⪯
𝑘
(𝑅 Z 𝑆). Without loss of generality,

let 𝑅 have two attributes 𝐴 and 𝐵 and 𝑆 have 𝐵 and𝐶 , then𝑇 contains three attributes (𝐴, 𝐵,𝐶) and
the join condition of 𝑅 Z 𝑆 is on their common attribute 𝐵. The standard approach considers the

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:10 Qichen Wang, Qiyao Luo, and Yilei Wang

Fig. 3. The transformed bipartite graph based on the running instance. Vertices in grey are the vertices on
the left-hand side, and white are on the right-hand side.

join and top-k as separate operators. By calculating the join 𝑇 ′ = 𝑅 Z 𝑆 first, then calculating the

top-k on single table 𝑇 ′, such an approach would take at least 𝑂 (|𝑇 ′ | + 𝑘) time, where |𝑇 ′ | = 𝑁 2
in

the worst case, which can be significantly larger than 𝑁 or 𝑘 .

Tziavelis et al. [58] introduced an innovative algorithm designed to evaluate top-k binary join

queries in a time complexity of 𝑂 (𝑁 + 𝑘 log𝑘). The authors ingeniously transformed the join

problem into a special 𝑘-longest path problem by constructing a directed bipartite graph from

instances of relations 𝑅 and 𝑆 . Precisely, vertices 𝑣𝑟 on the right-hand side were mapped one-to-one

to each tuple in 𝑅 or 𝑆 , while vertices 𝑣𝑙 on the left-hand side were mapped to each value of attribute

𝐵. Additionally, two unique vertices, denoted as source and sink, were introduced on the left-hand

side. Connections were established from source to all vertices in 𝑅 and from all vertices in 𝑆 to sink
with a length of 0. For every vertex in 𝑡 ∈ 𝑅 on the right-hand side, a connection was made to 𝜋𝐵𝑡

on the left-hand side, with a length equivalent to the annotation 𝑣 (𝑡); similarly, for every vertex

in 𝑡 ∈ 𝑆 on the right-hand side, a connection was made from 𝜋𝐵𝑡 to t, with a length equivalent to

𝑣 (𝑡). Consequently, the top-k binary join results correspond to the top-k longest paths between

source and sink. An illustrative example of the bipartite graph is provided in Figure 3. To identify

the k-longest path problem, the authors employed a modified dynamic programming technique,

diverging from maintaining a single maximum/minimum value, preserving at most 𝑘 values for

each entry to retrieve 𝑘 results expediently.

Despite the above method offering an optimal running time guarantee, transforming the problem

into the shortest path problem is non-trivial and hard to implement inside a database systemwithout

modifying the kernel. Furthermore, its dependency on specific data structures, such as heaps, to

assure runtime may hamper practical efficiency. To remedy these deficiencies, we introduce a

relational algorithm, level-k, which is based on the following observation:

Proposition 4.1. For any (𝑎, 𝑏) ∈ 𝑅, let (𝑏, 𝑐1), . . . , (𝑏, 𝑐𝑙) be tuples in 𝑆 that can join with (𝑎, 𝑏),
and 𝑣 (𝑏, 𝑐1) ≻ 𝑣 (𝑏, 𝑐2) ≻ · · · ≻ 𝑣 (𝑏, 𝑐𝑙). (𝑎, 𝑏, 𝑐𝑖) ∉ 𝑇 implies (𝑎, 𝑏, 𝑐 𝑗) ∉ 𝑇 for any 𝑗 > 𝑖 , as
𝑣 (𝑎, 𝑏, 𝑐𝑖) = 𝑣 (𝑎, 𝑏) ⊗ 𝑣 (𝑏, 𝑐𝑖) ≻ 𝑣 (𝑎, 𝑏) ⊗ 𝑣 (𝑏, 𝑐 𝑗) = 𝑣 (𝑎, 𝑏, 𝑐 𝑗).

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:11

Input 𝑅 𝑆 𝜌𝐵 (𝑆) 𝜆⪯
𝑘
(𝑅 Z 𝑆) Query

𝐴 𝐵 𝑉1
𝑎1 𝑏1 11

𝑎2 𝑏1 2

𝑎3 𝑏2 3

𝑎4 𝑏3 4

𝑎5 𝑏3 8

𝑎6 𝑏4 1

𝑎7 𝑏5 9

𝐵 𝐶 𝑉2
𝑏2 𝑐1 30

𝑏2 𝑐2 31

𝑏2 𝑐3 32

𝑏2 𝑐4 33

𝑏3 𝑐5 14

𝑏3 𝑐6 16

𝑏4 𝑐7 18

𝑏1 𝑐8 10

𝐵 𝐶 ID 𝑉2
𝑏2 𝑐1 4 30

𝑏2 𝑐2 3 31

𝑏2 𝑐3 2 32

𝑏2 𝑐4 1 33

𝑏3 𝑐5 2 14

𝑏3 𝑐6 1 16

𝑏4 𝑐7 1 18

𝑏1 𝑐8 1 10

𝐴 𝐵 𝐶 𝑉

𝑎3 𝑏2 𝑐4 36

𝑎3 𝑏2 𝑐3 35

𝑎3 𝑏2 𝑐2 34

𝑎3 𝑏2 𝑐1 33

𝑎5 𝑏3 𝑐6 24

-- 𝑂 (|𝑅 Z 𝑆 | log |𝑅 Z 𝑆 |)
SELECT * FROM R, S

WHERE R.B = S.B

ORDER BY R.V1+S.V2 DESC

LIMIT k;

Level 𝑅𝑖 𝑆𝑖 𝑅𝑖 Z 𝑆𝑖 𝑇𝑖 Level-k SQL

𝑖 = 0 Same as above

𝐵 𝐶 ID 𝑉2
𝑏2 𝑐3 2 32

𝑏2 𝑐4 1 33

𝑏3 𝑐6 1 16

𝐴 𝐵 𝐶 ID 𝑉

𝑎3 𝑏2 𝑐3 2 35

𝑎3 𝑏2 𝑐4 1 36

𝑎4 𝑏3 𝑐6 1 20

𝑎5 𝑏3 𝑐6 1 24

𝐴 𝐵 𝐶 ID 𝑉

𝑎3 𝑏2 𝑐4 1 36

𝑎3 𝑏2 𝑐3 2 35

𝑎5 𝑏3 𝑐6 1 24

𝑎4 𝑏3 𝑐6 1 20

-- Calculate ordered S0 𝑂 (𝑁 + 𝑘)
SELECT *, row_number() over (PARTITION BY B

ORDER BY V2 DESC) as ID FROM (SELECT S.B, C, V2 FROM S,

(SELECT B, MAX(V1) as rv FROM R GROUP BY B) AS Rt

WHERE Rt.B = S.B ORDER BY Rt.rv+S.v2 DESC LIMIT 5) AS St;

-- Calculate T1 𝑂 (𝑁 + 𝑘)
SELECT *, R.V1+S1.V2 AS v FROM R,

(SELECT * FROM S0 WHERE ID <= 2) AS S1

WHERE S1.B = R.B ORDER BY R.V1+S1.V2 DESC LIMIT 5;

𝑖 = 1

𝐴 𝐵 𝑉1
𝑎3 𝑏2 3

𝐵 𝐶 ID 𝑉2
𝑏2 𝑐1 4 30

𝑏2 𝑐2 3 31

𝐴 𝐵 𝐶 ID 𝑉

𝑎3 𝑏2 𝑐1 3 33

𝑎3 𝑏2 𝑐2 4 34

𝐴 𝐵 𝐶 ID 𝑉

𝑎3 𝑏2 𝑐4 1 36

𝑎3 𝑏2 𝑐3 2 35

𝑎3 𝑏2 𝑐2 3 34

𝑎3 𝑏2 𝑐1 4 33

𝑎5 𝑏3 𝑐6 1 24

-- Calculate R1 𝑂 (𝑘)
SELECT A, B, V1 FROM T0 WHERE T0.ID = 2;

-- Calcluate T2 𝑂 (𝑘)
SELECT * FROM T1 UNION ALL (SELECT *, R1.V1 + S1.V2 as v

FROM R1, (SELECT * FROM S0 WHERE ID > 2 AND ID <= 4) AS S1

WHERE S1.B = R1.B ORDER BY R1.V1+S1.V2 DESC LIMIT 5)

AS Tt ORDER BY v DESC LIMIT 5;

𝑖 = 2

𝐴 𝐵 𝑉1
𝑎3 𝑏2 3

𝐵 𝐶 ID 𝑉2
∅

𝐴 𝐵 𝐶 ID 𝑉

∅ Same as above
-- Omitted due to space constraint

-- Similar to i=1

Product-k SQL

SELECT *, row_number() over (PARTITION BY B ORDER BY V2 DESC) as ID FROM (SELECT S.B, C, V2
FROM S,

(SELECT B, MAX(V1) as v FROM R GROUP BY B) Rt WHERE Rt.B = S.B ORDER BY R.v+S.v2 DESC LIMIT

5) St; -- Calculate ordered S0 𝑂 (𝑁 + 𝑘)
SELECT * FROM R, (SELECT * FROM S0 WHERE ID <= 5) AS St WHERE St.B = R.B ORDER BY R.V1+St.V2

DESC LIMIT 5; -- Calculate T 𝑂 (𝑁 + 𝑘2)

Fig. 4. A running example of top-5 binary join query 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶).

In simpler terms, if we have found 𝑘 numbers larger than 𝑣 (𝑎, 𝑏, 𝑐𝑖), it becomes unnecessary to

evaluate any 𝑗 ≥ 𝑖 , as there will invariably be at least 𝑘 numbers surpassing 𝑣 (𝑎, 𝑏, 𝑐 𝑗) as well. We

add a column ID to 𝑆 indicating its relative order (i.e., (𝑏, 𝑐𝑖) gets ID← 𝑖).

Leveraging the above proposition, we introduce our algorithm level-k. The first step of the

algorithm aims to eliminate unnecessary tuples from 𝑆 if |𝑆 | > 𝑘 . Given that at most 𝑘 distinct 𝑆

tuples can present in the final query results, this is a prudent step. Meanwhile, we calculate the ID

utilizing the Row-number(𝜌) function. By the quasi-commutative principle, we deduce that

𝜋⊕
𝐵,𝐶

(
𝜆⪯
𝑘
(𝑅 Z 𝑆)

)
⊆ 𝜆⪯

𝑘

(
𝜋⊕
𝐵,𝐶
(𝑅 Z 𝑆)

)
.

Here, the left-hand side furnishes tuples in 𝑆 that contribute to the top-𝑘 binary join result, which is

a subset of the right side denote as 𝑆 ′. Therefore, replacing 𝑆 with 𝑆 ′ does not affect the correctness
of the query, i.e., 𝜆⪯

𝑘
(𝑅 Z 𝑆) = 𝜆⪯

𝑘
(𝑅 Z 𝑆 ′), while the size of 𝑆 ′ is at most 𝑘 .

The algorithm is then divided into log(𝑘) rounds. Here, we use 2 as the base in the following

discussion. In the first round, instead of joining each (𝑎, 𝑏) ∈ 𝑅 with all possible (𝑏, 𝑐𝑖) ∈ 𝑆 pairs,

we only choose the top two, (𝑏, 𝑐1) and (𝑏, 𝑐2), to join. From the join result, labeled 𝑇1, we take the

first top-k tuples and use them to filter out all tuples for the next round. If (𝑎, 𝑏, 𝑐2) is not in the k

results from the first round, then (𝑎, 𝑏, 𝑐𝑖) for any 𝑖 ≥ 2 will not be in the final top-k query results,

based on the proposition. So, we only need to filter out all (𝑎, 𝑏) so that (𝑎, 𝑏, 𝑐2) is in the k results

as a candidate for the second round.

Example 4.2. Figure 4 shows an instance of the top-k query 𝜆⪯
𝑘
(𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶)). For the first

round of computation, level-k will first compute 𝑆 ← 𝜌⪯
𝐵
𝜆⪯
𝑘
(𝑆 Z 𝜋⊕

𝐵
(𝑅)). The result is marked

with white in the 𝜌⪯
𝐵
(𝑆) table, and now only 5 tuples are left in 𝑆 . After that, level-k selects all

tuples 𝑡 ∈ 𝑆 where 𝑡 .ID ≤ 2, and (𝑏2, 𝑐3), (𝑏2, 𝑐4), and (𝑏3, 𝑐6) are returned as 𝑆1. By computing

𝑅1 Z 𝑆1, we get the result for 𝑇1. It’s important to note that (𝑎5, 𝑏3, 𝑐5) has a larger annotation

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:12 Qichen Wang, Qiyao Luo, and Yilei Wang

Algorithm 1: Level-k algorithm for top-k binary join

Input: Relations 𝑅(𝐴, 𝐵) and 𝑆 (𝐵,𝐶)
Output: Top-k binary join result 𝑇 (𝐴, 𝐵,𝐶) = 𝜆⪯

𝑘
(𝑅 Z 𝑆)

1 𝑆 ← 𝜌⪯
𝐵
𝜆⪯
𝑘
((𝑆 Z 𝜋⊕

𝐵
(𝑅))) ; // Eliminate unnecessary tuples from 𝑆.

2 𝑆0 ← 𝜎ID≤2 (𝑆) ; // Get the top-2 annots for all 𝐵.

3 𝑇0 ← 𝜆⪯
𝑘
(𝑅 Z 𝑆0) ; // First round join.

4 for 𝑖 ← 1 to ⌈logmin(𝑛, 𝑘)⌉ − 1 do
5 𝑅𝑖 ← 𝜋𝐴,𝐵 (𝜎ID=2𝑖 (𝑇𝑖−1)) ; // Find candidates in 𝑅 for the (𝑖 + 1)-th round.

6 𝑆𝑖 ← 𝜎
2
𝑖<ID≤2𝑖+1 (𝑆) ; // Get tuples in 𝑆 for the (𝑖 + 1)-th round.

7 𝑇𝑖 ← 𝜆⪯
𝑘
(𝑇𝑖−1 ∪ (𝑅𝑖 Z 𝑆𝑖)) ; // Merge top-𝑘 results with the (𝑖 + 1)-th round join.

8 𝑇 ← 𝜋𝐴,𝐵,𝐶 (𝑇⌈log𝑛⌉−1);
9 return 𝑇

than (𝑎4, 𝑏3, 𝑐6), but since (𝑏3, 𝑐5) is not in the top-5 results of 𝜋⊕
𝐵,𝐶
((𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶)), we don’t

consider that record as it cannot appear in the final query results.

After completing the first round of computation, we have at most 𝑘/2 candidates from 𝑅1 for

the second round. For each (𝑎, 𝑏) ∈ 𝑅1, we select the tuples (𝑏, 𝑐3) to (𝑏, 𝑐22) and compute 𝑇2. Next,

we union 𝑇1 and 𝑇2, filter out the top-k results, and choose all 𝑅2 ⊆ 𝑅1 so that for any (𝑎, 𝑏) ∈ 𝑅2,
(𝑎, 𝑏, 𝑐4) ∈ 𝑇1 ∪𝑇2.
Example 4.3. Moving forward with Example 4.2, in the second round of computation, since only

one tuple (𝑎3, 𝑏2, 𝑐3) in 𝑇1 has ID = 2, we can filter out other tuples from 𝑅1, leaving just the tuple

(𝑎3, 𝑏2) in 𝑅2. At the same time, we select tuples from 𝑆 into 𝑆2 where 𝐵 = 𝑏2 and 2 < ID ≤ 4,

returning two tuples. Similarly, we compute 𝑅2 Z 𝑆2, union the result with 𝑇1, and retain the 5

tuples with the largest annotations. The tuple (𝑎4, 𝑏3, 𝑐6) is removed from the candidate results

during this step.

The procedure unfolds recursively, as shown in Algorithm 1. In each iteration, the size of 𝑅𝑖 is at

most 𝑘/2𝑖 . Once 𝑖 reaches log𝑘 , the size of 𝑅𝑖 narrows down to 1, thereby enabling the computation

to stop after log𝑘 iterations.

Example 4.4. Building upon Example 4.2, in the third round computation, given that (𝑎3, 𝑏2, 𝑐1)
is the sole tuple with ID = 4, only (𝑎3, 𝑏2) is retained in 𝑅2. Nevertheless, no tuples in 𝑆 satisfy the

conditions 𝐵 = 𝑏2 and 4 < ID ≤ 8. Consequently, the results from the second round are preserved

unchanged. As 2
3 > 5, three computational rounds suffice for the algorithm to reach termination.

Theorem 4.5. Algorithm 1 correctly returns 𝜆⪯
𝑘
(𝑅 Z 𝑆) and runs in time 𝑂 (𝑁 + 𝑘 log𝑘) with base

𝑏 = 2.

Proof. Firstly, we demonstrate correctness by asserting that for any 𝑖 ≥ 0, the condition

𝑇𝑖 = 𝜆⪯
𝑘
(𝜎

ID≤2𝑖+1 (𝑅 Z 𝑆)) is true. This is substantiated via induction. It is obviously true for 𝑖 = 0.

Suppose the statement holds for 𝑖 ≤ 𝑖0, and then for 𝑖 = 𝑖0 + 1,
𝜆⪯
𝑘
(𝜎

ID≤2𝑖+1 (𝑅 Z 𝑆))

= 𝜆⪯
𝑘

(
𝜆⪯
𝑘
(𝜎

ID≤2𝑖 (𝑅 Z 𝑆)) ∪ 𝜆⪯
𝑘
(𝜎

2
𝑖<ID≤2𝑖+1 (𝑅 Z 𝑆))

)
= 𝜆⪯

𝑘

(
𝑇𝑖−1 ∪ 𝜆⪯𝑘 (𝜎2𝑖<ID≤2𝑖+1 (𝑅 Z 𝑆))

)
.

If a tuple (𝑎, 𝑏, 𝑐, ID = 𝑘) ∈ 𝑇𝑖 with 𝑘 > 2
𝑖
exists, there must also be a tuple (𝑎, 𝑏, 𝑐′, ID = 2

𝑖) ∈ 𝑇𝑖
as 𝑣 (𝑎, 𝑏, 𝑐′) ≻ 𝑣 (𝑎, 𝑏, 𝑐). Thus (𝑎, 𝑏) ∈ 𝜋𝐴.𝐵 (𝜎ID=2𝑖 (𝑇𝑖−1)) = 𝑅𝑖 , allowing for the extension of the

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:13

Algorithm 2: Product-k algorithm for top-k binary join

Input: Relations 𝑅(𝐴, 𝐵) and 𝑆 (𝐵,𝐶)
Output: Top-k binary join result 𝑇 (𝐴, 𝐵,𝐶) = 𝜆⪯

𝑘
(𝑅 Z 𝑆)

1 𝑆 ← 𝜌⪯
𝐵
𝜆⪯
𝑘
(𝑆 Z 𝜋⊕

𝐵
(𝑅)) ; // Eliminate unnecessary tuples from 𝑆.

2 𝑆0 ← 𝜎ID≤1 (𝑆) ; // Get the max annot. for all 𝐵.

// Get the 𝑘 possible tuples in 𝑅.

3 𝑇0 ← 𝜆⪯
𝑘
(𝑅 Z 𝑆0);

4 𝑅1 ← 𝜋𝐴,𝐵 (𝑇0);
// Join 𝑅1 and 𝑆 to get the final results.

5 𝑆1 ← 𝜎
ID≤𝑘 (𝑆);

6 𝑇 ← 𝜋𝐴,𝐵,𝐶 (𝜆⪯𝑘 (𝑅1 Z 𝑆1));
7 return 𝑇

previous equation to:

𝜆⪯
𝑘
(𝜎

ID≤2𝑖+1 (𝑅 Z 𝑆)) = 𝜆⪯
𝑘

(
𝑇𝑖−1 ∪ 𝜆⪯𝑘 (𝜎2𝑖<ID≤2𝑖+1 (𝑅𝑖 Z 𝑆𝑖))

)
= 𝑇𝑖 .

Subsequently, we explore the running time. Note that 𝑆0 is computed by selecting tuples in 𝑆

with ID 1 or 2, making the degree of 𝑆0 on 𝐵 bounded by two. Thus, each tuple in 𝑅 can join a

maximum of two tuples in 𝑆0, ensuring |𝑅 Z 𝑆0 | ≤ 2𝑁 , thereby taking𝑂 (𝑁) time. Analogously, for

any 𝑖 , as the degree of 𝑆𝑖 on 𝐵 is 2
𝑖
, and once |𝑅𝑖 | ≤ 𝑘/2𝑖 can be validated, then |𝑅𝑖 Z 𝑆𝑖 | ≤ 𝑘 , and

making the running time of Line 5–7 𝑂 (𝑘).
To demonstrate |𝑅𝑖 | ≤ 𝑘/2𝑖 , consider any (𝑎, 𝑏, 𝑐, 2𝑖) ∈ 𝑇𝑖−1. Since 𝑇𝑖−1 = 𝜆⪯

𝑘
(𝜎

ID≤2𝑖+1 (𝑅 Z 𝑆)),
a tuple (𝑎, 𝑏, 𝑐 𝑗 , 𝑗) ∈ 𝑇𝑖−1 must exist for all 𝑗 ≤ 2

𝑖
, because 𝑣 (𝑎, 𝑏, 𝑐 𝑗 , 𝑗) = 𝑣 (𝑎, 𝑏) ⊗ 𝑣 (𝑏, 𝑐 𝑗 , 𝑗) ≻

𝑣 (𝑎, 𝑏) ⊗ 𝑣 (𝑏, 𝑐, 2𝑖) = 𝑣 (𝑎, 𝑏, 𝑐, 2𝑖). Consequently, |𝜎
ID=2𝑖 (𝑇𝑖−1) | ≤ 𝑘/2𝑖 , leading to |𝑅𝑖 | ≤ 𝑘/2𝑖 .

Given that Lines 5–7 execute a maximum of log𝑘 rounds, the total running time culminates

to 𝑂 (𝑁 + 𝑘 log𝑘). If base 𝑏 exceeds 2, the maximal degree of 𝑆𝑖 per round becomes 𝑏𝑖 , with total

rounds to be log𝑏 𝑘 , leading to a running time of 𝑂 (𝑏𝑁 + 𝑏𝑘 log𝑏 𝑘). □

Reducing the number of rounds. We demonstrated that level-k can operate optimally within time

𝑂 (𝑁 +𝑘 log𝑘). Although increasing the base may theoretically diminish running time, the algorithm

still executes in log𝑘 rounds. In real-world scenarios, 𝑘 is often relatively small, prompting a desire

to decrease the round number for enhanced practical performance. To achieve this, we introduce

product-k. After computing 𝑅1 and 𝑇0, we promptly select all (𝑏, 𝑐𝑖) with 𝑖 ≤ 𝑘 , executing the join

thereafter. The algorithm is elaborated in Algorithm 2.

Product-k may be viewed as a specific instantiation of level-k, wherein we assign the base as

𝑘 . The computations for 𝑆0,𝑇0, and 𝑅1 merely consume 𝑂 (𝑁) time. Meanwhile, 𝑅1 could have at

most 𝑘 tuples. For every (𝑎, 𝑏) ∈ 𝑅1, a maximum of 𝑘 join tuples in 𝑆1 may be present, leading the

computation of 𝑇 to take 𝑂 (𝑘2) time.

Theorem 4.6. Algorithm 2 runs in time 𝑂 (𝑁 + 𝑘2).

SQL Rewrite. Since both product-k and level-k are relational algorithms, every step of the

algorithms can be written into SQL queries, and the execution time of each query is bounded, as

stated in Table 1 and Figure 4.

4.2 Top-k Free-connex CQs
The binary join algorithms can be further extended to accommodate a top-k free-connex Conjunctive

Query 𝜆⪯
𝑘
(Q), where Q is a free-connex CQ. Let T be the free-connex join tree of Q. Throughout

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:14 Qichen Wang, Qiyao Luo, and Yilei Wang

our algorithms, we employ a series of reduction procedures. For each reduction Q(𝑹) → Q′ (𝑹′),
we ensure the following:

• Q′ is still a free-connex CQ;
• |𝑹′ | = |𝑹 | − 1, and we can compute 𝑹′

in 𝑂 (𝑁 + 𝑘 log𝑘) (or 𝑂 (𝑁 + 𝑘2)) time;

• 𝜆⪯
𝑘
(Q′) = 𝜆⪯

𝑘
(Q).

Initialization. The initialization phase of our algorithm eliminates all non-output attributes from

Q. Specifically, this step can be skipped when Q is already a full join query. Let 𝑅(𝐸) be any leaf

node devoid of unique output attributes and 𝑅𝑝 (𝐸𝑝) as its corresponding parent node. Subsequently,
𝑅 can be removed by replace 𝑅𝑝 with

𝑅′𝑝 ≔ 𝜋⊕
𝐸𝑝
(𝑅𝑝 Z 𝑅) = 𝑅𝑝 Z (𝜋⊕𝐸𝑝∩𝐸𝑅).

The query can be computed in an optimal𝑂 (𝑁) time complexity by pushing down the aggregation.

For each 𝑡 ∈ 𝑅′𝑝 , its annotation 𝑣 (𝑡) equals the sum of the original annotation of 𝑡 ∈ 𝑅𝑝 and

the maximal annotation from 𝑅 that can join with 𝑡 . The initial query Q is demonstrated to be

equivalent to Q′.

𝜆⪯
𝑘
(Q′) = 𝜆⪯

𝑘

(
𝜋⊕𝑶

(
Z

𝑅′∈𝑹−{𝑅,𝑅𝑝 }
𝑅′ Z 𝑅′𝑝

))
= 𝜆⪯

𝑘

(
𝜋⊕𝑶 Z

𝑅′∈𝑹
𝑅′
)
= 𝜆⪯

𝑘
(Q)

We recursively remove all such 𝑅, subsequently obtaining a reduced query Q′ on relation 𝑹′. It
is noteworthy that some relations 𝑅(𝐸) ∈ 𝑹′ may still have unique non-output attributes, and we

need to remove them by replacing all such 𝑅 with 𝑅′ by

𝑅′ = 𝜋⊕
𝐸∩𝑶𝑅. (1)

Calculating 𝑅′𝑝 or 𝑅 takes only 𝑂 (𝑁) cost. After the reduction, we can obtain a full join query Q′
such that 𝜆⪯

𝑘
(Q′) = (Q).

Reduction. For the reduced full join query Q, let 𝑅(𝐸) be the leaf relation and 𝑅𝑝 (𝐸𝑝) be its parent.
Invoking the quasi-commutative principle (Theorem 3.1), we have

𝜋⊕
𝐸∪𝐸𝑝

(
𝜆⪯
𝑘
(Q)

)
⊆ 𝜆⪯

𝑘

(
𝜋⊕
𝐸∪𝐸𝑝 (Q)

)
.

This reveals that 𝑅 and 𝑅𝑝 can be replaced with the relation 𝑇 ≔ 𝜆⪯
𝑘

(
𝜋⊕
𝐸∪𝐸𝑝 (Q)

)
which size is

bounded by 𝑘 . A direct evaluation of the query above might lead to an 𝑂 (𝑁 2) running time, given

that 𝜋⊕
𝐸∪𝐸𝑝 (Q) can yield up to 𝑂 (𝑁 2) results. However, we establish that 𝑇 can be computed in

𝑂 (𝑁 + 𝑘 log𝑘) or 𝑂 (𝑁 + 𝑘2) time:

Lemma 4.7. Given a full join query Q, let 𝑅(𝐸) be the leaf relation and 𝑅𝑝 (𝐸𝑝) be its parent,
𝑇 ≔ 𝜆⪯

𝑘

(
𝜋⊕
𝐸∪𝐸𝑝 (Q)

)
can be calculated in𝑂 (𝑁 +𝑘 log𝑘) time by using level-k algorithm, or𝑂 (𝑁 +𝑘2)

time by using product-k algorithm.

Proof. We can rewrite 𝑇 as follow:

𝑇 ≔𝜆⪯
𝑘

(
𝜋⊕
𝐸∪𝐸𝑝 (Q)

)
= 𝜆⪯

𝑘

(
𝑅 Z 𝜋⊕

𝐸𝑝

(
Z𝑅′∈𝑹−{𝑅} 𝑅

′)) .
The aggregation 𝑅′𝑝 ≔ 𝜋⊕

𝐸𝑝
(Z𝑅′∈𝑹−𝑅 𝑅′) is a free-connex CQs. Notably, the query can be efficiently

evaluated in 𝑂 (𝑁) time, facilitated by the presence of 𝐸𝑝 in a single relation 𝑅𝑝 [10, 42]. Gottlob

et al. [32] also shows how to rewrite such aggregation queries in SQL while preserving the running

time. This is achieved by a series of group-by-aggregate and semi-join operators to represent such

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:15

queries. After computing 𝑅′𝑝 , an intriguing observation surfaces: the query becomes a top-k binary

join query 𝑇 ≔ 𝜆⪯
𝑘
(𝑅 Z 𝑅′𝑝). Subsequently, we can use either level-k or product-k to solve the

query in 𝑂 (𝑁 + 𝑘 log𝑘) or 𝑂 (𝑁 + 𝑘2) time. □

Based on Lemma 4.7, we can reduce Q(𝑹) to Q′ (𝑹′) in𝑂 (𝑁 + 𝑘 log𝑘) or𝑂 (𝑁 + 𝑘2) time, where

Q′ = 𝜆⪯
𝑘
(Z𝑅′∈𝑹′ 𝑅′) and 𝑹′ = 𝑹 ∪ {𝑇 } − {𝑅, 𝑅𝑝 }. We repeat this process until only one relation is

left in the entire query, and the relation stores the exact result of the top-k free-connex CQ.

Since we consider the data complexity and assume |Q| = 𝑂 (1), combining the above results, we

can obtain the following theorem:

Theorem 4.8. Top-k free-connex CQs can be solved in 𝑂 (𝑁 + 𝑘 log𝑘) using level-k or 𝑂 (𝑁 + 𝑘2)
using product-k.

4.3 Top-k CQs
As highlighted in Section 2, a non-acyclic query can be converted into an acyclic query or even

a free-connex query by applying Generalized Hypertree Decomposition (GHD). Similar to the

process used for full join queries, given a GHD with a treewidth 𝑤 , each bag query 𝑄Bag is first

evaluated in 𝑂 (𝑁𝑤) time using the Worst-case Optimal Join algorithm. This step transforms each

bag into a special relation, making the residual query acyclic. With this transformation, we can then

directly apply either the level-k or the product-k algorithm for further processing. The procedure

is summarized in Algorithm 3. Combining Theorem 3.1, we can show the following theorem for

general conjunctive queries.

Theorem 4.9. A top-k query Q can be evaluated in 𝑂 (𝑁𝑤 + 𝑘 log𝑘) time using the level-k
algorithm (or 𝑂 (𝑁𝑤 + 𝑘2) using product-k), where𝑤 is the width of the optimal GHD/GHDs for Q.

Algorithm 3: Evaluating top-k queries with GHD

Input: A CQ Q with a given GHD {Bag
1
, · · · ,Bag𝑑 } on database instance 𝐷 .

Output: Top-k result of Q(𝐷)
// Compute the full join for each bag

1 forall 𝑖 ∈ [𝑑] do
2 𝑅Bag𝑖 ←Z𝑅∈Bag𝑖 𝑅;
// Q is equivalent to Z𝑖∈[𝑑] 𝑅Bag𝑖 .
// Evaluate the resulted acyclic query

3 Q′ := 𝜆⪯
𝑘
(Z𝑖∈[𝑑] 𝑅Bag𝑖) using product-k or level-k;

4 return Q′

4.4 Top-kQueries v.s. Rank Enumeration
Rank enumeration [23, 24, 59] focuses on the sequential output of query results in a specific order.

The formal definition is as follows:

Definition 4.10. Given a CQ Q over a database 𝐷 and a ranking function, ranked enumeration

outputs the query answers Q(𝐷) sequentially in ascending ⪯ order while ensuring no duplicates.

Rank enumeration can handle top-k queries by maintaining a counter during result enumeration.

When this counter hits the value 𝑘 , the enumeration stops, and the results up to that point constitute

the top-k query results. However, rank enumeration requires one more capability beyond that

of top-k queries: it must be able to enumerate the (𝑘 + 1)-th result following the 𝑘-th result for

arbitrary 𝑘 . This requirement is not present in standard top-k queries. As a consequence, the

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:16 Qichen Wang, Qiyao Luo, and Yilei Wang

algorithms cannot discard tuples that do not contribute to the final 𝑘 results, and pre-processing

the entire database is required. Additionally, each tuple should be stored in a heap-like structure to

retrieve the subsequent tuple efficiently. These extra requirements cause rank enumeration to be

less efficient for solving top-k queries, leading to a complexity of 𝑂 (𝑁𝑤
log𝑁 + 𝑘 log𝑁). Here, the

extra log𝑁 factor in 𝑁𝑤
log𝑁 is due to the extensive pre-processing across the entire database

after pre-processing each bag in 𝑁𝑤
time, while the additional log𝑁 factor in 𝑘 log𝑁 arises from

managing the heap-like structure that contains all 𝑁 elements. Notably, rank enumeration is not

a standard operator in the SQL standard and is not commonly utilized in well-known database

products. In practical scenarios, the value of 𝑘 is always predetermined. By capitalizing on this

knowledge of 𝑘 beforehand, we can enhance the efficiency of the methods proposed in [23, 24, 59],

reducing the complexity by a factor of log𝑁 .

4.5 Unions and Outer Joins.
We now extend our algorithms to support unions and various types of join operators.

Unions. A Union of Conjunctive Queries (UCQ) is of the form Q := Q1 ∪ · · · ∪ Q𝑚 , where each
Q𝑖 shares the same output attributes. An important property for top-k UCQ 𝜆⪯

𝑘
(Q) is as follows:

Lemma 4.11. 𝜆⪯
𝑘
(Q) = 𝜆⪯

𝑘
(⋃𝑖∈[𝑚] Q𝑖) = 𝜆⪯

𝑘
(⋃𝑖∈[𝑚] (𝜆⪯𝑘 (Q𝑖))).

This lemma holds because for each Q𝑖 , any query result not within the top-k of Q𝑖 cannot be in
the top-k of Q. Utilizing this lemma, we can evaluate any top-k UCQ with the following algorithm:

Algorithm 4: Evaluating top-k UCQs

Input: A UCQ Q := ∪𝑖∈[𝑚]Q𝑖 .
Output: Top-k result of Q(𝐷)
// Compute 𝜆⪯

𝑘
(Q𝑖) for each 𝑖 ∈ [𝑚].

1 forall 𝑖 ∈ [𝑚] do
2 𝑅𝑖 ← 𝜆⪯

𝑘
(Q𝑖) // Using Algorithm 3 to compute.

// Union all query results and get the final top-k for Q.
3 Q′ := 𝜆⪯

𝑘
(∪𝑖∈[𝑚]𝑅𝑖);

4 return Q′

Each individual Q𝑖 is computed in 𝑂 (𝑁𝑤𝑖 + 𝑘 log𝑘) time using level-k (or 𝑂 (𝑁𝑤𝑖 + 𝑘2) using
product-k). The for-loop in Algorithm 4 thus takes a total time of 𝑂 (𝑁𝑤 + 𝑘 log𝑘), considering
the query size𝑚 as constant and 𝑤 = max𝑖∈[𝑚] 𝑤𝑖 . Merging and sorting𝑚 tables with a total of

𝑘𝑚 records can be done in 𝑂 (𝑘 log𝑘) time.

Theorem 4.12. Top-k UCQ Q can be solved in𝑂 (𝑁𝑤 +𝑘 log𝑘) using level-k or𝑂 (𝑁𝑤 +𝑘2) using
product-k, where𝑤 = max𝑖∈[𝑚] 𝑤𝑖 .

Outer Joins. Our previous discussions have primarily focused on natural joins. We are now

considering extending this to include outer joins. To support outer joins, we need first to define an

appropriate annotation Annot for NULL values, as outer joins produce results even when there

are no matching tuples in the other join table. For a left outer join 𝑅 Z 𝑆 , we create a special tuple

NULL→ Annot that can join with any tuples in 𝑅. We then rewrite the top-k queries as follows:

𝜆⪯
𝑘
(𝑅 Z 𝑆) = 𝜆⪯

𝑘
(𝜆⪯

𝑘
(𝑅 Z 𝑆) ∪ 𝜆⪯

𝑘
((𝑅 − 𝑅 ⋉ 𝑆) Z {NULL}).

Here, 𝑅 − 𝑅 ⋉ 𝑆 can be computed using the NOT EXISTS clause in SQL, and this operation can be

executed in 𝑂 (𝑁) time. Additionally, joining with a single tuple NULL can also be achieved in

𝑂 (𝑁) time. Thus, a left outer join between 𝑅 and 𝑆 can be completed in 𝑂 (𝑁 + 𝑘 log𝑘) time. The

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:17

support for the right outer join is symmetrical to that of the left outer join. For full outer joins, we

have:

𝜆⪯
𝑘
(𝑅 Z 𝑆) = 𝜆⪯

𝑘
(𝜆⪯

𝑘
(𝑅 Z 𝑆) ∪ 𝜆⪯

𝑘
(𝑅 Z 𝑆)) .

Thereby, we can extend support to outer joins while maintaining the same complexity as natural

joins.

Theta Joins. Theta joins represent another join where the join condition can be an arbitrary

function between two tables 𝑅 and 𝑆 , in addition to equality conditions. Evaluating theta joins in

𝑂 (𝑁𝑤 +𝑂𝑈𝑇) time remains an open problem, as does the efficient support for top-k theta joins.

Tziavelis et al. [59] explored the support for rank enumeration in theta joins over comparison

conditions like 𝑅.𝐴 > 𝑆.𝐵. However, this approach does not extend to more complex comparison

queries such as 𝑅 Z 𝑆 Z 𝑇 where 𝑅.𝐴 > 𝑇 .𝐵, and the generalization to support an arbitrary join

function 𝑓 (𝑅, 𝑆) is still an open question. We believe that will be an interesting direction to explore

in the future research.

5 SECURE TOP-K QUERY PROCESSING
Another advantage of the relational algorithm is data-independent, i.e., the algorithm is only decided

by the query, not the data. Data-independent is a necessary condition for secure computation,

which aims to protect the access pattern over different input instances. Our algorithms directly

apply to an arbitrary secure model if there is a secure implementation of all relation operators

listed in Table 1 under the model. As an example, we discuss how to instantiate our algorithms

within the three-server honest majority model in this section. Despite simply replacing operators

with their underlying secure implementations, we note that level-k involves repeatedly joining

tables with similar structures for log𝑘 times and leveraging this property to save a log𝑘 factor. See

Section 5.3 for details.

5.1 The Three-Server Model
In the three-server honest majority model (or the three-server model for brevity), there are three
different types of roles: one or more data owners who hold the original data, three non-collude

servers who are responsible for computation, and a client who submits a query to the servers and

receives query results from them after computation. To protect the privacy of the data, the data

owners send their data to the servers in a secret shared manner. The servers compute over the

shared data by a secure protocol, which finally outputs the shares of the query result. Finally, the

servers send the shares of outputs to the client, who reconstructs them to obtain the plaintext query

result.

The three-server model is a special type of outsourcing model, where data owners outsource

their data to the cloud (the three servers), which provides service for storage and computation.

It disables the possibility that the cloud steals sensitive data from the data owners. Moreover, it

enables computation over joint data from multiple data owners, which potentially makes data more

valuable.

Secret sharing. The replicated secret-sharing scheme [52] is the most popular scheme under the

three-server model, due to its simplicity and high efficiency. This could be the primary reason why

the three-server model is more popular than the two-server model, as in the two-server model,

computing over shares is complicated and of low efficiency.

In replicated secret-sharing, an ℓ-bit secret 𝑣 ∈ {0, 1}ℓ is split into three strings with ℓ bits {𝑣𝑖 }2𝑖=0,
where each 𝑣𝑖 is a uniformly random string in {0, 1}ℓ , with the constraint that the logical XOR

of them is equal to 𝑣 . The 𝑖-th server holds 𝑣𝑖 and 𝑣 (𝑖+1) mod 3. Any two servers can reconstruct 𝑣

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:18 Qichen Wang, Qiyao Luo, and Yilei Wang

jointly, while each server learns nothing about 𝑣 . In this paper, unless specified, all the input and

output of the functionalities or protocols are in the replicated secret-shared form.

Mohassel and Rindal [52] introduce how to efficiently perform basic operations (logical AND,

OR; arithmetic addition, multiplication; comparison, etc.) securely over the replicated secret shares.

Recent papers [35, 36] have shown how to perform relational operators securely over shared

relations. The details are given later.

Cost model. Under the three-server model, both computation cost and communication cost

between the servers are measured. In our theoretical analysis, we simply use “cost” to refer to any

of them, as all of the protocols presented have the same complexity on the two costs.

If the maximum network latency between the three servers is significant, then the number of

communication rounds should also be considered. All protocols in this paper have 𝑂 (log(𝑁 + 𝑘))
rounds, so the total latency overhead is negligible.

5.2 Relational Operators Protocols
This section introduces the efficient protocols for common relational operators under the three-

server model, as summarized in Table 1. Specifically, the protocol for the “Order-By” operator

proposed in [35] has cost 𝑂 (𝑁 log𝑁) under the three-server model. Wang and Yi [64] have intro-

duced Boolean circuits for the operators “Selection”, “Projection”, “Group-By (Aggregation)” and

PK-FK join. By evaluating these circuits under the three-server model and replacing the under-

lying sorting circuit with the “Order-By” operator, their costs are 𝑂 (𝑁), 𝑂 (𝑁), 𝑂 (𝑁 log𝑁), and
𝑂 (𝑁 log𝑁), respectively. We simply compute the nested loop join for a general binary join without

the PK-FK constraint, which incurs 𝑂 (𝑁 2) cost.
In the PK-FK join 𝑅 Z 𝑆 where 𝑆 is unique on the join key, one observation is that if 𝑅 is already

ordered by the join key, then there exists an 𝑂 (𝑁) protocol to compute the join result: the initial

step involves replacing all equivalent join keys in 𝑅, except the first one of them, with dummy

elements to ensure that each join key in 𝑅 is unique. Subsequently, a straightforward PK-PK join (as

described in [53]) is executed such that the true tuple (without any changes to the dummy) receives

the join tuple from 𝑆 . The remaining tuples receive a value of 0. Finally, a segmented prefix-sum

circuit (proposed in [64]) duplicates previous join tuples for subsequent tuples with identical join

keys.

The secure “Top-k” operator adopts the idea from [35] that any comparison-based algorithm is

oblivious after the input data is randomly shuffled. Thus, we can simply convert secure quicksort

to secure top-𝑘 by changing the quicksort algorithm to the quick select algorithm, which has cost

𝑂 (𝑁).
The secure “Row-Number” operator begins by grouping the relation based on the attribute 𝑬 .

Equivalent tuples are then arranged in descending order according to their annotation. Subsequently,

a segmented prefix-sum circuit is employed to compute the row number within each segment,

where tuples sharing the same 𝑬 form a segment. This operation incurs 𝑂 (𝑁 log𝑁) cost.

5.3 Secure Implementation of Level-k
So far, we have introduced the secure implementations of all the relational operators involved

in the product-k algorithm, and the total cost of product-k under the three-server model is

𝑂 (𝑁 log𝑁 + 𝑘2). In this section, we will show that the level-k algorithm for top-k binary join is

𝑂 (𝑁 log𝑁 + 𝑘 log𝑘), so the total cost of level-k algorithm for any top-k free-connex conjunctive

query.

In Algorithm 1, the join operators are binary join without limitation, which has a huge complexity

(𝑂 (𝑁 2)) in secure settings. Our goal is to simplify them to PK-FK joins so that the cost can be

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:19

reduced to 𝑂 (𝑁 log𝑁). Our method is that instead of filtering 𝑆𝑖 in each level, we assign attribute

ID to 𝑅𝑖 as well, where ID = 𝑖 represents the tuple that needs to join with the 𝑖-th largest tuple in 𝑆 .

We make the join as a PK-FK join, with join key {ID} ∪ 𝑬 . Concretely, we copy each tuple in 𝑅𝑖 2
𝑖

times, and attach a new attribute ID from 2
𝑖 + 1 to 2𝑖+1. In the expanded relation, the first |𝑅𝑖 | tuples

have ID = 2
𝑖 + 1, the second |𝑅𝑖 | tuples have ID = 2

𝑖 + 2, and so on. Furthermore, we previously

sort relation 𝑅 by 𝑬 in order, and the expanded relation is obviously ordered by ID then 𝑬 . Thus,
the PK-FK join without sorting only takes 𝑂 (𝑘) costs.

Then all operators in each level (𝑖 ≥ 1) take𝑂 (𝑘) costs, and the first join at (𝑖 = 0) has𝑂 (𝑁 log𝑁)
cost, so the total cost is 𝑂 (𝑁 log𝑁 + 𝑘 log𝑘).

5.4 Security Guarantee
Our protocol is a sequential composition of existing semi-honest building blocks whose security

has been established by prior work; all intermediate results are stored in secret-shared form, and

the randomness is all independent. Thus, our protocol is secure against semi-honest adversary
[16]. The adversary can potentially corrupt any subset of data owners, the client, and, at most,

one server. All the corrupted parties are assumed to follow the protocol but attempt to gather

additional information or deduce sensitive details from the information exchanged during the

protocol execution. Our protocol ensures comprehensive protection at every stage: before, during,

and after query processing.

The ideal function for a top-𝑘 free-connex conjunctive query (i.e., the CQ contains the relation

schema, annotation information, output attributes 𝑶) is presented in Algorithm 5, where we use

J·K to denote an element or a relation that is presented in secret-shared form.

Algorithm 5: Ideal Functionality Ftopk
Input: Free-connex CQ; relations J𝑅1 (𝑭1;𝑉)K, · · · , J𝑅𝑘 (𝑭𝒌 ;𝑉)K; limit 𝑘

Output: Query result JT (𝑶 ;𝑉)K
1 Recover 𝑅𝑖 from J𝑅𝑖K for 1 ≤ 𝑖 ≤ 𝑘 ;

2 J ← 𝑅1 Z 𝑅2 Z · · · Z 𝑅𝑘 ; // Calculate the full join results.

3 Q ← 𝜋𝑶 (J) ; // Project on the output attributes.

4 T ← 𝜆⪯
𝑘
(Q) ; // Find the top-𝑘 annotations.

5 Compute the secret share JT K of T ;

6 return JT K

Under the assumption that the servers do not collude, our protocol provides a strong guarantee:

If the client is not corrupted, the adversary gains no knowledge beyond the public information

(the input and output size, the relation schema). The intermediate join size (i.e., |𝑅𝑖 Z 𝑅 𝑗 | for some

𝑖, 𝑗), and even the full join size and project size (i.e., |J | and |Q|) are protected. If the client is also
corrupted, the only extra information the adversary learns about the honest parties is the final

query result. From the adversary’s perspective, all transcripts received during the execution of the

protocol appear random, providing no discernible information about the underlying data.

Our secure building blocks have corresponding malicious versions, meaning our protocol can be

extended to operate in the malicious setting. This extension would incorporate additional security

measures and techniques to mitigate the risks posed by adversaries with malicious intent. We defer

the detailed formal constructions and rigorous proofs to future work.

6 EXPERIMENTS
6.1 System Architecture
We have designed 𝜆SQL, an end-to-end framework based on our newly proposed algorithms. 𝜆SQL

comprises two primary components: a parser and a query rewriter. The parser, adapted from

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:20 Qichen Wang, Qiyao Luo, and Yilei Wang

[22], first interprets a given SQL query from the user and then generates a candidate join tree.

This tree is subsequently fed into the query rewriter. As detailed in Sections 3 and 4.2, the query

rewriter transforms the join tree into revised SQL queries. These rewritten SQLs are automatically

submitted to the chosen SQL engine for execution. Currently, 𝜆SQL is integrated with DuckDB, and

the execution of rewritten SQLs on other platforms is conducted manually. However, it is designed

to integrate smoothly with any existing SQL engine. By comparing these rewritten queries with

the original SQL queries, we can effectively demonstrate the improved efficiency of our algorithms.

Additionally, we have developed a prototype system, SecTopK, focusing on secure query pro-

cessing. This system is built upon the ABY3 framework[52] and incorporates the level-k and

product-k algorithms, along with other fundamental operators like 𝜆⪯
𝑘
. While the query plans

are currently drafted manually for each SQL query, our newly introduced APIs offer a declarative

interface similar to platforms like Spark or Flink.

Optimization. An important note in Algorithm 1 is the repetitive processing of the relation 𝑆 for

log𝑘 iterations within the loop. To optimize performance and reduce redundant computations, our

system opts to materialize this relation and construct an index on the join key before initiating the

loop. This strategy has significantly enhanced the efficiency of level-k, accelerating computation

by a factor of at least 5.

6.2 Experimental Setup
Query processing engines compared. To evaluate the efficacy of our optimized techniques, we

selected PostgreSQL [2] and DuckDB[1] for centralized settings and Spark SQL [5] for parallel/dis-

tributed settings. All three engines are widely adopted in both academia and the industry. For

secure computation, no established baseline exists for top-k queries. As an alternative, we use the

time for sorting the full join results in ABY3 as our comparative baseline. Given that the baseline

approach needs to sort the full join results to obtain the final top-k results, this runtime sets a

lower bound for the baseline approach. Our experiments examined the single-thread and parallel

efficiency of our algorithms on PostgreSQL, DuckDB, and Spark SQL. Meanwhile, we also compare

our approach with state-of-the-art rank enumeration algorithm [23]. The source codes from [23]

are written in C++ and cannot accept arbitrary SQL queries. To obtain a fair comparison, we also

implemented our algorithms in C++ to remove the overhead caused by the database systems. To

exclude I/O costs from the total execution time, we pre-loaded all data into memory and only

measured the query execution time.

Experimental environment. Our experiments were executed on two machines. Experiments on

PostgreSQL version 10.23, DuckDB version 0.6.1, and Spark SQL version 3.3.0 were conducted on a

machine with dual Xeon 2.0GHz processors (28 cores/56 threads each), 1TB RAM, and running

Oracle Linux 8.8. We used a machine with an Intel Core i5 3.0GHz processor, 6 cores/6 threads,

32GB RAM, and running MacOS 12 for secure query evaluations. We assigned 40 cores for Spark,

while the other platforms used a single core during experiments. We executed each query 10 times

on every engine, reporting the mean runtime. Each query runs at most 8 hours to obtain meaningful

results.

Datasets and Queries. We use graph pattern queries in the experiments with real-world graphs

from SNAP (Stanford Network Analysis Project) [4], summarized in Table 2. We store edge infor-

mation as a relation Graph(src, dst, rating) and the rating for each tuple is randomly generated. We

evaluate 5 graph queries, including three line queries, Line-2, Line-3, and Line-4. For each query,

we set ⊗ to be +, and ⊕ to be max. For example, the original SQL query for the Line-3 query is

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:21

Graph #edge #vertex #Line-2 #Line-3 #Line-4 #Star #Tree

Bitcoin 24186 3783 0.12 4.28 185 26.7 600

Wiki 103689 7115 0.45 20.2 914 479 19060

Epinions 508837 75879 3.99 372 37897 2826 168224

DBLP 1049866 13477 0.70 6.75 83.5 140 2365

Twitter 1768149 81306 13.3 1180 118615 3171 280886

Table 2. Graph datasets and their statistics. #edge is the input size of graph datasets. #Q is the full join size
of Q over the corresponding graph datasets in units of 10 million (×107).

SELECT R.src, R.dst, S.dst, T.dst,

R.rating + S.rating + T.rating as total_rating

FROM graph R, graph S, graph T

WHERE R.dst = S.src and S.dst = T.src

ORDER BY total_rating DESC LIMIT k

We also include Star query and Tree query, where the original SQL for Tree query is

SELECT S.dst, S.src, R.src, T.dst, U.dst,

R.rating+S.rating+T.rating+U.rating as total_rating

FROM graph R, graph S, graph T, graph U

WHERE R.dst = S.src and S.dst = T.src and S.dst = U.src

ORDER BY total_rating DESC LIMIT k

Due to the space constraint, the full list of original SQL queries, as well as optimized SQL queries

after rewriting, are given in the code repository [3].

6.3 Experiment Results
Running time. Figure 5 presents the execution times across various engines. For these tests, we

set 𝑘 = 1024 for all queries, and 𝑏 = 32 for level-k on plaintext. Bars touching the axis boundary

indicate instances where the system either exceeded the 8-hour threshold or exhausted available

memory.

Our optimization techniques significantly outperform original (vanilla) SQL. Across all tested

queries and platforms, our rewritten SQLs consistently yield improvements ranging from 1 to

4 orders of magnitude. These techniques are particularly effective for queries generating large

volumes of join results. For example, in the Tree query, we observed improvements of 2500x on

SparkSQL, 20000x on DuckDB, and a remarkable 160000x on PostgreSQL.

Furthermore, our newly introduced algorithms have rendered secure query processing not

only possible but also efficient. As illustrated in Figure 5, the improvements are more striking in

scenarios requiring protected query procedures. For complex queries like Line-4, Star, and Tree,

the ABY3 system fails to sort the full join results across all datasets. Interestingly, SecTopK not

only succeeds in these cases but also surpasses the performance of vanilla DuckDB, which lacks

security guarantees. However, it is important to note that SecTopK requires 100x to 1000x more

computation time compared to optimized plaintext SQL. This additional time is the cost of secure

computation. Despite this, our innovative approach consistently completes all queries within a few

hundred seconds, making the overall execution time both practical and acceptable.

Comparison with rank enumeration algorithm. We also compared both level-k and product-
k with state-of-the-art rank enumeration algorithm from [23], with the results also illustrated

in Figure 5. The performance difference is marginal for smaller datasets, but our algorithms

demonstrates up to 7x improvement on larger datasets. This aligns with the analysis presented

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:22 Qichen Wang, Qiyao Luo, and Yilei Wang

1e-02
1e-01
1e+00
1e+01
1e+02
1e+03
1e+04
1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter

	

PG-Original
PG-ProductK

PG-LevelK

SparkSQL-Original
SparkSQL-ProductK

SparkSQL-LevelK

DuckDB-Original
DuckDB-ProductK

DuckDB-LevelK

Secure-Sorting
Secure-ProductK

Secure-LevelK

RankEnum
C-ProductK

C-LevelK

Line-2

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter

	

Line-3

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter

P
ro
ce

ss
in
g
	T
im

e	
(S
ec

)

Line-4

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter Bitcoin Wiki-Vote DBLP Epinions Twitter

	

TreeStar

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter

	

Line-2

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter

	

Line-3

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter

P
ro
ce
ss
in
g
	T
im
e	
(S
ec
)

Line-4

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Bitcoin Wiki-Vote DBLP Epinions Twitter Bitcoin Wiki-Vote DBLP Epinions Twitter

	

TreeStar

Fig. 5. Running time of test queries.

	1

	10

	100

	1000

	10000

	8 	64 	256 	1024 	4096 	16384 	32768

P
ro
ce
ss
in
g
	T
im
e	
(S
ec
)

Number	of	Output	Records

Secure-ProductK
Secure-LevelK

DuckDB-ProductK
DuckDB-LevelK

DuckDB-Original
PostgreSQL-ProductK

SparkSQL-ProductK

Fig. 6. Running time v.s. different K (Line-3, Twitter).

	0.1

	1

	10

	100

	1000

	10000

	5.55 	7.68 	20.77 	79.03 	315.46

P
ro
ce
ss
in
g
	T
im
e	
(S
ec
)

Average	Degree	of	Vertices

Secure-ProductK
Secure-LevelK

DuckDB-ProductK
DuckDB-LevelK

DuckDB-Original
Secure-Sort

Fig. 7. Running time v.s. degree (Line-3, DBLP).

	1

	10

	100

	1000

	4 	8 	16 	32 	64 	128 	512 	1024

P
ro
ce
ss
in
g
	T
im
e	
(S
ec
)

Base

DuckDB-ProductK DuckDB-LevelK

Fig. 8. Running time v.s. base (Line-4, Twitter).

	1

	10

	100

	1000

	10000

	100000

	1 	2 	4 	8 	16 	32 	40

P
ro

ce
ss

in
g
	T

im
e	

(S
ec

)

Number	of	Processors

DuckDB-ProductK
DuckDB-Original

SparkSQL-ProductK
SparkSQL-Original

PostgreSQL-ProductK

Fig. 9. Running time v.s. parallelism (Line-4, Twitter).

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

Relational Algorithms for Top-kQuery Evaluation 168:23

Query Parsing Rewrite I/O Execution Original

Line-3 0.058 0.002 0.612 2.379 1884.354

Line-4 0.064 0.003 0.612 3.325 \

Star 0.053 0.002 0.612 2.460 529.256

Tree 0.064 0.003 0.612 3.540 1128.236

Table 3. Breakdown of Running Time (s) of 𝜆SQL (Twitter).

in Section 4.4, which indicates that our algorithms can improve performance by a log𝑁 factor

compared to rank enumeration algorithms. The performance gain is less noticeable for smaller 𝑁

but becomes more significant as 𝑁 increases.

Breakdown time of 𝜆SQL. To further understand the efficiency of 𝜆SQL, we conducted experiments

analyzing the time consumed by its various components, as shown in Table 3. Notably, the parsing

and rewriting times are independent of the input size. However, there is potential to enhance 𝜆SQL’s

performance further. In typical database systems, optimization usually takes only a fewmilliseconds

for a given query. Integrating 𝜆SQL directly into database systems could eliminate redundant parsing

and enable the generation of execution plans without needing to rewrite queries, thus potentially

boosting overall query execution efficiency. This integration would require customization for each

database system, though. As a proof-of-concept prototype, 𝜆SQL is designed to be easily integrated

into any SQL-supporting database system, allowing for the testing and performance evaluation of

product-k and level-k algorithms.

Impact of different 𝑘 . As suggested by our theoretical results, the parameter 𝑘 distinctly influences

the performance of both product-k and level-k while its impact on the baseline approach is

marginal. On the other hand, the experimental results from Figure 5 suggest both product-k and

level-k have similar performance. We further studied this phenomenon by investigating the effects

of varying 𝑘 values for Line-3 query on the Twitter graph, with outcomes illustrated in Figure 6.

For the baseline approach, an increase in 𝑘 doesn’t alter its running time, given that the full

join computation dominates its performance. On the other hand, as 𝑘 increases, level-k’s runtime

experiences a slight rise in both secure and plaintext computations. product-k exhibits a more

significant increase in its execution time for secure computation, particularly when 𝑘 exceeds 1024.

Yet, for plaintext computation, its performance remains relatively stable. This discrepancy arises

because secure computations require worst-case running times to ensure data independence. When

𝑘 = 1024, the term 𝑘2 becomes the dominant factor influencing the runtime. The worst case rarely

happens in plaintext scenarios, enabling product-k to operate more efficiently. Additionally, a

growth in 𝑘 leads to a rise in computational rounds, imposing a constant overhead on level-k that

impacts its efficiency. To summarize, for secure computations, level-k is more favorable due to its

better worst-case runtime compared to product-k. In plaintext scenarios, however, product-k
typically delivers better performance.

Impact of data distribution. An important property for oblivious algorithms is data-independent.

To verify the data independence of both level-k and product-k, we manipulated the average degree

of the graph. This was done by retaining all edges while clustering its vertices. The experiment

results are illustrated in Figure 7.
7
For plaintext computations, the running times of both level-k

and product-k decreased when the average degree increased. In contrast, the baseline approach

sees linear growth in its running time as the full join results also increased when the average degree

7
Noted the running time for level-k and product-k are close, causing most of their data points to overlap.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

168:24 Qichen Wang, Qiyao Luo, and Yilei Wang

increased. When considering secure computations, however, the running time for both algorithms

remains consistent due to the data-independence.

Impact of different base. When designing the level-k algorithm, we set the base 𝑏 = 2. As the

base increases, the theoretical overhead also increases. However, at the same time, a larger base

efficiently reduces the length of the SQL, leading to fewer constant overheads introduced by SQL

parsing and query optimization. To study the impact of different bases, we modified the base of the

level-k algorithm, and the experimental results are shown in Figure 8. We found the total time

first decreases and then increases, as the base increases, and 𝑏 = 1024 corresponds to the result of

product-k. We leave the way to choose the best 𝑏 as an open problem.

Impact of Different Parallelism. To assess the impact of varying degrees of parallelism, we assigned

different numbers of cores to each system and re-executed the Line-4 query on the Twitter graph.

The results are shown in Figure 9. Increasing the parallelism in PostgreSQL did not substantially

alter the runtime. Even with 40 cores, the original query failed to compute within the time limit.

Meanwhile, both the original queries and our algorithms benefited from increasing parallelism on

other platforms, with the original queries showing a more noticeable improvement. This is likely

because our algorithms have already considerably reduced the overall computational load.

7 CONCLUSION
In this research, we introduced two relational algorithms, level-k and product-k, specifically
designed to evaluate top-k conjunctive queries efficiently. These algorithms are not only optimal

in their performance but also data-independent, a necessary condition for secure computation.

Furthermore, we developed two systems: 𝜆SQL, which facilitates plaintext computation of top-k

queries and can be integrated into any SQL-supporting database system, and SecTopK, dedicated

to the secure computation of top-k queries. Our experimental results demonstrate substantial

enhancements, with our new systems surpassing baseline performances by up to six orders of

magnitude. We are optimistic that this work will stimulate further research in relational algorithms,

paving the way for more straightforward implementation of novel algorithms in real-world systems

and enabling swift adaptation of these algorithms for secure computing.

ACKNOWLEDGMENTS
This work is supported by Hong Kong RGC Grants (Project No. C2004-21GF and C2003-23Y). The

authors would like to thank their advisor, Prof. Ke Yi, for his continuous guidance and support

throughout their PhD studies.

REFERENCES
[1] DuckDB. https://duckdb.org/.

[2] PostgreSQL. https://www.postgre.org/.

[3] Relational Algorithms for Top-k Query Evaluation, Source Code Repository. https://github.com/lambdaSQL/TopK-CQ.

[4] SNAP. https://snap.stanford.edu/snap/.

[5] SparkSQL. https://spark.apache.org/sql/.

[6] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases. Addison-Wesley Longman Publishing

Co., Inc.

[7] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions Asked Frequently. In Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (San Francisco, California, USA) (PODS
’16). Association for Computing Machinery, New York, NY, USA, 13–28. https://doi.org/10.1145/2902251.2902280

[8] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-Type Inequalities, Submodular Width,

and Disjunctive Datalog Have to Do with One Another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17). Association for Computing Machinery,

New York, NY, USA, 429–444. https://doi.org/10.1145/3034786.3056105

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

https://duckdb.org/
https://www.postgre.org/
https://github.com/lambdaSQL/TopK-CQ
 https://snap.stanford.edu/snap/
https://spark.apache.org/sql/
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/3034786.3056105

Relational Algorithms for Top-kQuery Evaluation 168:25

[9] Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella, Srinivasan Raghuraman, and Peter Rindal. 2022. Secret-

Shared Joins with Multiplicity from Aggregation Trees. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. Association for Computing Machinery, 209–222.

[10] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic Conjunctive Queries and Constant Delay

Enumeration. In Computer Science Logic. Springer Berlin Heidelberg, Berlin, Heidelberg, 208–222.

[11] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie Rogers. 2017. SMCQL: Secure Querying

for Federated Databases. Proc. VLDB Endow. 10, 6 (feb 2017), 673–684. https://doi.org/10.14778/3055330.3055334

[12] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers. 2018. Shrinkwrap: Efficient SQL

Query Processing in Differentially Private Data Federations. Proc. VLDB Endow. 12, 3 (nov 2018), 307–320.
[13] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. 1983. On the desirability of acyclic database schemes. JACM 30, 3

(1983), 479–513.

[14] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness Theorems for Non-Cryptographic Fault-

Tolerant Distributed Computation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing.
1–10.

[15] Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Matthias Hofer, Wim Martens, Filip Murlak, Joshua

Shinavier, Sławek Staworko, and Dominik Tomaszuk. 2022. Threshold Queries in Theory and in the Wild. Proc. VLDB
Endow. 15, 5 (jan 2022), 1105–1118. https://doi.org/10.14778/3510397.3510407

[16] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Protocols. J. Cryptol. 13, 1 (jan 2000),

143–202.

[17] Nofar Carmeli and Markus Kröll. 2021. On the Enumeration Complexity of Unions of Conjunctive Queries. ACM
Trans. Database Syst. 46, 2, Article 5 (may 2021), 41 pages. https://doi.org/10.1145/3450263

[18] Sunoh Choi, Gabriel Ghinita, Hyo-Sang Lim, and Elisa Bertino. 2014. Secure kNN Query Processing in Untrusted

Cloud Environments. IEEE Transactions on Knowledge and Data Engineering 26, 11 (2014), 2818–2831. https://doi.org/

10.1109/TKDE.2014.2302434

[19] Yannis Chronis, Thanh Do, Goetz Graefe, and Keith Peters. 2020. External Merge Sort for Top-K Queries: Eager Input

Filtering Guided by Histograms. In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA, 2423–2437.

https://doi.org/10.1145/3318464.3389729

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms (3rd ed.). The MIT Press.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd
Edition. MIT Press. http://mitpress.mit.edu/books/introduction-algorithms

[22] Binyang Dai, QichenWang, and Ke Yi. 2023. SparkSQL+: Next-Generation Query Planning over Spark. In Companion of
the 2023 International Conference on Management of Data (Seattle, WA, USA) (SIGMOD ’23). Association for Computing

Machinery, New York, NY, USA, 115–118. https://doi.org/10.1145/3555041.3589715

[23] Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2022. Ranked Enumeration of Join Queries with Projections. Proc.
VLDB Endow. 15, 5 (jan 2022), 1024–1037. https://doi.org/10.14778/3510397.3510401

[24] Shaleen Deep and Paraschos Koutris. 2021. Ranked Enumeration of Conjunctive Query Results. In 24th International
Conference on Database Theory (ICDT 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[25] Andrew Eisenberg, Jim Melton, Krishna Kulkarni, Jan-Eike Michels, and Fred Zemke. 2004. SQL:2003 Has Been

Published. SIGMOD Rec. 33, 1 (mar 2004), 119–126. https://doi.org/10.1145/974121.974142

[26] David Evans, Vladimir Kolesnikov, andMike Rosulek. 2018. A Pragmatic Introduction to Secure Multi-Party Computation.
[27] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. JACM 30, 3 (1983), 514–550.

[28] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation Algorithms for Middleware. In Proceedings of
the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Santa Barbara, California,
USA) (PODS ’01). Association for Computing Machinery, New York, NY, USA, 102–113. https://doi.org/10.1145/375551.

375567

[29] Jonathan Finger and Neoklis Polyzotis. 2009. Robust and Efficient Algorithms for Rank Join Evaluation. In Proceedings
of the 2009 ACM SIGMOD International Conference on Management of Data (Providence, Rhode Island, USA) (SIGMOD
’09). Association for Computing Machinery, New York, NY, USA, 415–428. https://doi.org/10.1145/1559845.1559890

[30] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing. 218–229.

[31] Michel Gondran and Michel Minoux. 2008. Graphs, dioids and semirings: new models and algorithms. Vol. 41. Springer
Science & Business Media.

[32] Georg Gottlob, Matthias Lanzinger, Davide Mario Longo, Cem Okulmus, Reinhard Pichler, and Alexander Selzer. 2023.

Structure-Guided Query Evaluation: Towards Bridging the Gap from Theory to Practice. arXiv preprint arXiv:2303.02723
(2023).

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

https://doi.org/10.14778/3055330.3055334
https://doi.org/10.14778/3510397.3510407
https://doi.org/10.1145/3450263
https://doi.org/10.1109/TKDE.2014.2302434
https://doi.org/10.1109/TKDE.2014.2302434
https://doi.org/10.1145/3318464.3389729
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3555041.3589715
https://doi.org/10.14778/3510397.3510401
https://doi.org/10.1145/974121.974142
https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/1559845.1559890

168:26 Qichen Wang, Qiyao Luo, and Yilei Wang

[33] Georg Gottlob, Matthias Lanzinger, Reinhard Pichler, and Igor Razgon. 2021. Complexity Analysis of Generalized and

Fractional Hypertree Decompositions. J. ACM 68, 5, Article 38 (sep 2021), 50 pages. https://doi.org/10.1145/3457374

[34] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 1999. Hypertree Decompositions and Tractable Queries.

In Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (,
Philadelphia, Pennsylvania, USA,) (PODS ’99). Association for Computing Machinery, New York, NY, USA, 21–32.

https://doi.org/10.1145/303976.303979

[35] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. 2013. Practically Efficient Multi-party

Sorting Protocols from Comparison Sort Algorithms. In Information Security and Cryptology – ICISC 2012. 202–216.
[36] Feng Han, Lan Zhang, Hanwen Feng, Weiran Liu, and Xiangyang Li. 2022. Scape: Scalable Collaborative Analytics

System on Private Database with Malicious Security. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). 1740–1753.

[37] Zhian He, Wai Kit Wong, Ben Kao, David Wai Lok Cheung, Rongbin Li, Siu Ming Yiu, and Eric Lo. 2015. SDB: A Secure

Query Processing System with Data Interoperability. Proc. VLDB Endow. 8, 12 (aug 2015), 1876–1879.
[38] Xiao Hu and Qichen Wang. 2023. Computing the Difference of Conjunctive Queries Efficiently. Proc. ACM Manag.

Data 1, 2, Article 153 (jun 2023), 26 pages. https://doi.org/10.1145/3589298

[39] Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. 2017. The Dynamic Yannakakis Algorithm: Compact and

Efficient Query Processing Under Updates. In Proceedings of the 2017 ACM International Conference on Management of
Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA, 1259–1274.

https://doi.org/10.1145/3035918.3064027

[40] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. 2003. Supporting Top-K Join Queries in Relational Databases.

In Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29 (Berlin, Germany) (VLDB ’03).
VLDB Endowment, 754–765.

[41] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A Survey of Top-k Query Processing Techniques

in Relational Database Systems. ACM Comput. Surv. 40, 4, Article 11 (oct 2008), 58 pages. https://doi.org/10.1145/

1391729.1391730

[42] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré. 2016. AJAR: Aggregations and Joins over Annotated

Relations. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(San Francisco, California, USA) (PODS ’16). Association for Computing Machinery, New York, NY, USA, 91–106.

https://doi.org/10.1145/2902251.2902293

[43] Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley, Hung Q. Ngo, Xuanlong Nguyen, Dan Olteanu, and

Maximilian Schleich. 2020. Functional Aggregate Queries with Additive Inequalities. ACM Trans. Database Syst. 45, 4,
Article 17 (dec 2020), 41 pages. https://doi.org/10.1145/3426865

[44] Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu. 2015. Answering Conjunctive Queries with Inequalities.

In 18th International Conference on Database Theory (ICDT 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[45] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient Oblivious Database Joins. Proc. VLDB
Endow. 13, 12 (jul 2020), 2132–2145. https://doi.org/10.14778/3407790.3407814

[46] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song. 2005. RankSQL: Query Algebra and Optimization

for Relational Top-k Queries. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of
Data (Baltimore, Maryland) (SIGMOD ’05). Association for Computing Machinery, New York, NY, USA, 131–142.

https://doi.org/10.1145/1066157.1066173

[47] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia. 2023. SECRECY: Secure collaborative analytics

in untrusted clouds. In 20th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2023, Boston,
MA, April 17-19, 2023, Mahesh Balakrishnan and Manya Ghobadi (Eds.). USENIX Association, 1031–1056. https:

//www.usenix.org/conference/nsdi23/presentation/liagouris

[48] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. 2018. Tight hardness for shortest cycles and paths

in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

1236–1252.

[49] Kajetan Maliszewski, Jorge-Arnulfo Quiané-Ruiz, Jonas Traub, and Volker Markl. 2021. What is the Price for Joining

Securely? Benchmarking Equi-Joins in Trusted Execution Environments. Proc. VLDB Endow. 15, 3 (nov 2021), 659–672.

https://doi.org/10.14778/3494124.3494146

[50] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W. Cheung. 2007. Efficient Top-k Aggregation of Ranked

Inputs. ACM Trans. Database Syst. 32, 3 (aug 2007), 19–es. https://doi.org/10.1145/1272743.1272749

[51] Xianrui Meng, Haohan Zhu, and George Kollios. 2018. Top-k Query Processing on Encrypted Databases with

Strong Security Guarantees. In 2018 IEEE 34th International Conference on Data Engineering (ICDE). 353–364. https:

//doi.org/10.1109/ICDE.2018.00040

[52] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework for Machine Learning. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing Machinery,

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

https://doi.org/10.1145/3457374
https://doi.org/10.1145/303976.303979
https://doi.org/10.1145/3589298
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1145/2902251.2902293
https://doi.org/10.1145/3426865
https://doi.org/10.14778/3407790.3407814
https://doi.org/10.1145/1066157.1066173
https://www.usenix.org/conference/nsdi23/presentation/liagouris
https://www.usenix.org/conference/nsdi23/presentation/liagouris
https://doi.org/10.14778/3494124.3494146
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1109/ICDE.2018.00040
https://doi.org/10.1109/ICDE.2018.00040

Relational Algorithms for Top-kQuery Evaluation 168:27

35–52.

[53] Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins and PSI for Secret Shared Data. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing

Machinery, 1271–1287.

[54] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jeffrey Scott Vitter. 2001. Supporting Incremental

Join Queries on Ranked Inputs. In Proceedings of the 27th International Conference on Very Large Data Bases (VLDB ’01).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 281–290.

[55] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-Case Optimal Join Algorithms. J. ACM 65, 3,

Article 16 (mar 2018), 40 pages. https://doi.org/10.1145/3180143

[56] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and Joseph M. Hellerstein. 2021. Senate: A

Maliciously-Secure MPC Platform for Collaborative Analytics. In Proceedings of the 30th Conference on USENIX Security
Symposium.

[57] Amir Shpilka. 2003. Lower bounds for matrix product. SIAM J. Comput. 32, 5 (2003), 1185–1200.
[58] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang. 2020. Optimal

Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. Proc. VLDB Endow. 13, 9 (may 2020),

1582–1597. https://doi.org/10.14778/3397230.3397250

[59] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal Join Algorithms Meet Top-k. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2659–2665. https://doi.org/10.1145/3318464.3383132

[60] Denny Vrandečić. 2012. Wikidata: A New Platform for Collaborative Data Collection. In Proceedings of the 21st
International Conference on World Wide Web (Lyon, France) (WWW ’12 Companion). Association for Computing

Machinery, New York, NY, USA, 1063–1064. https://doi.org/10.1145/2187980.2188242

[61] Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. 2023. Change Propagation Without Joins. Proc. VLDB Endow. 16, 5
(jan 2023), 1046–1058. https://doi.org/10.14778/3579075.3579080

[62] Qichen Wang and Ke Yi. 2022. Conjunctive Queries with Comparisons. In Proceedings of the 2022 International
Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machinery, New

York, NY, USA, 108–121. https://doi.org/10.1145/3514221.3517830

[63] Qichen Wang and Ke Yi. 2023. Conjunctive Queries with Comparisons. SIGMOD Rec. 52, 1 (jun 2023), 54–62.

https://doi.org/10.1145/3604437.3604450

[64] Yilei Wang and Ke Yi. 2022. Query Evaluation by Circuits. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (Philadelphia, PA, USA) (PODS ’22). Association for Computing Machinery,

New York, NY, USA, 67–78. https://doi.org/10.1145/3517804.3524142

[65] Wai Kit Wong, David Wai-lok Cheung, Ben Kao, and Nikos Mamoulis. 2009. Secure KNN Computation on Encrypted

Databases. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (Providence,

Rhode Island, USA) (SIGMOD ’09). Association for Computing Machinery, New York, NY, USA, 139–152. https:

//doi.org/10.1145/1559845.1559862

[66] Wai Kit Wong, Ben Kao, David Wai Lok Cheung, Rongbin Li, and Siu Ming Yiu. 2014. Secure Query Processing

with Data Interoperability in a Cloud Database Environment. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’14). 1395–1406.

[67] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB, Vol. 81. 82–94.
[68] Andrew C Yao. 1982. Protocols for secure computations. In 23rd Annual Symposium on Foundations of Computer Science.

IEEE, 160–164.

[69] Bin Yao, Feifei Li, and Xiaokui Xiao. 2013. Secure nearest neighbor revisited. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). 733–744. https://doi.org/10.1109/ICDE.2013.6544870

[70] Zhilin Zhang, Ke Wang, Chen Lin, and Weipeng Lin. 2018. Secure Top-k Inner Product Retrieval. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management (Torino, Italy) (CIKM ’18). Association
for Computing Machinery, New York, NY, USA, 77–86. https://doi.org/10.1145/3269206.3271791

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 168. Publication date: June 2024.

https://doi.org/10.1145/3180143
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.14778/3579075.3579080
https://doi.org/10.1145/3514221.3517830
https://doi.org/10.1145/3604437.3604450
https://doi.org/10.1145/3517804.3524142
https://doi.org/10.1145/1559845.1559862
https://doi.org/10.1145/1559845.1559862
https://doi.org/10.1109/ICDE.2013.6544870
https://doi.org/10.1145/3269206.3271791

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Outlines

	2 Preliminary
	2.1 Top-k Conjunctive Queries
	2.2 Classification of CQs

	3 Relational Algorithms
	4 The Top-k Algorithm
	4.1 Top-k Binary Join
	4.2 Top-k Free-connex CQs
	4.3 Top-k CQs
	4.4 Top-k Queries v.s. Rank Enumeration
	4.5 Unions and Outer Joins.

	5 Secure Top-k Query Processing
	5.1 The Three-Server Model
	5.2 Relational Operators Protocols
	5.3 Secure Implementation of Level-k
	5.4 Security Guarantee

	6 Experiments
	6.1 System Architecture
	6.2 Experimental Setup
	6.3 Experiment Results

	7 Conclusion
	Acknowledgments
	References

